

Abstract

We describe a $(1 + \varepsilon)$ -approximation algorithm for finding the minimum distortion embedding of an n -point metric space X into the shortest path metric space of a weighted graph G with m vertices. The running time of our algorithm is

$$m^{O(1)} \cdot n^{O(\omega)} \cdot (\delta_{opt} \Delta)^{\omega \cdot (1/\varepsilon)^{\lambda+2} \cdot \lambda \cdot (O(\delta_{opt}))^{2\lambda}}$$

parametrized by the values of the minimum distortion, δ_{opt} , the spread, Δ , of the points of X , the treewidth, ω , of G , and the doubling dimension, λ , of G . In particular, our result implies a PTAS provided an X with polynomial spread, and the doubling dimension of G , the treewidth of G , and δ_{opt} , are all constant. For example, if X has a polynomial spread and δ_{opt} is a constant, we obtain PTAS's for embedding X into the following spaces: the line, a cycle, a tree of bounded doubling dimension, and a k -outer planar graph of bounded doubling dimension (for a constant k).