

Abstract

Given a graph $G = (V, E)$ and an integer $k \in \mathbb{N}$, we study *k-Vertex Separator* (resp. *k-Edge Separator*), where the goal is to remove the minimum number of vertices (resp. edges) such that each connected component in the resulting graph has at most k vertices. Our primary focus is on the case where k is either a constant or a slowly growing function of n (e.g. $O(\log n)$ or $n^{o(1)}$). Our problems can be interpreted as a special case of three general classes of problems that have been studied separately (balanced graph partitioning, Hypergraph Vertex Cover (HVC), and fixed parameter tractability (FPT)). Our main result is an $O(\log k)$ -approximation algorithm for *k-Vertex Separator* that runs in time $2^{O(k)}n^{O(1)}$, and an $O(\log k)$ -approximation algorithm for *k-Edge Separator* that runs in time $n^{O(1)}$. Our result on *k-Edge Separator* improves the best previous graph partitioning algorithm for small k . Our result on *k-Vertex Separator* improves the simple $(k + 1)$ -approximation from HVC. When $\text{OPT} > k$, the running time $2^{O(k)}n^{O(1)}$ is faster than the lower bound $k^{\Omega(\text{OPT})}n^{\Omega(1)}$ for exact algorithms assuming the Exponential Time Hypothesis. While the running time of $2^{O(k)}n^{O(1)}$ for *k-Vertex Separator* seems unsatisfactory, we show that the superpolynomial dependence on k may be needed to achieve a polylogarithmic approximation ratio, based on hardness of *Densest k-Subgraph*. We also study *k-Path Transversal*, where the goal is to remove the minimum number of vertices such that there is no simple path of length k . With additional ideas from FPT algorithms and graph theory, we present an $O(\log k)$ -approximation algorithm for *k-Path Transversal* that runs in time $2^{O(k^3 \log k)}n^{O(1)}$. Previously, the existence of even $(1 - \delta)k$ -approximation algorithm for fixed $\delta > 0$ was open.