

Abstract

We revisit the problem of designing optimal, *individually rational* matching mechanisms (in a general sense, allowing for cycles in directed graphs), where each player—who is associated with a subset of vertices—matches as many of his own vertices when he opts into the matching mechanism as when he opts out. We offer a new perspective on this problem by considering an arbitrary graph, but assuming that vertices are associated with players at random. Our main result asserts that, under certain conditions, *any* fixed optimal matching is likely to be individually rational up to lower-order terms. We also show that a simple and practical mechanism is (fully) individually rational, and likely to be optimal up to lower-order terms. We discuss the implications of our results for market design in general, and kidney exchange in particular.