

Abstract

Computing the simulation preorder of a given Kripke structure (i.e., a directed graph with n labeled vertices) has crucial applications in model checking of temporal logic. It amounts to solving a specific two-players reachability game, called simulation game. We offer the first conditional lower bounds for this problem, and we relate its complexity (for computation, verification, and certification) to some variants of $n \times n$ matrix multiplication. We show that any $O(n^\alpha)$ -time algorithm for simulation games, even restricting to acyclic games/structures, can be used to compute $n \times n$ boolean matrix multiplication (BMM) in $O(n^\alpha)$ time. In the acyclic case, we match this bound by presenting the first subcubic algorithm, based on fast BMM, and running in $n^{\omega+o(1)}$ time (where $\omega < 2.376$ is the exponent of matrix multiplication). For both acyclic and cyclic structures, we point out the existence of natural and canonical $O(n^2)$ -size certificates, that can be verified in truly subcubic time by means of matrix multiplication. In the acyclic case, $O(n^2)$ time is sufficient, employing standard $(+, \times)$ -matrix product verification. In the cyclic case, a min-edge witness matrix multiplication (EWMM) is used, i.e., a matrix multiplication on the semi-ring (\max, \times) where one matrix contains only 0's and 1's, which is computable in truly subcubic $n^{(3+\omega)/2+o(1)}$ time. Finally, we show a reduction from EWMM to cyclic simulation games which implies a separation between the cyclic and the acyclic cases, unless EWMM can be verified in $n^{\omega+o(1)}$ time.