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Background

Objec&ve:	
‣ Formalize	the	connec&ons	between	the	Stable	Marriage	problem		

and	compu&ng	Greedy	Matchings.

Consequences:	
‣ Many	”new”	algorithms	for	compu&ng	GM	are	variants	of	algorithms	for	SM.	
‣ Parallel	algorithms	for	compu&ng	GM	can	also	be	applied	to	SM.	

The	Stable	Marriage	(SM)	problem	has		
a	long	and	rigorous	history.	

Greedy	Matchings	(GM)	have		
applica&ons	in	CSC	applica&ons.



The Stable Marriage Problem
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The Gale-Shapley Algorithm

m1 w1

m2 w2

m3 w3

m4 w4

(w3, w2, w1, w4)

(w1, w4, w3, w2)

(w1, w2, w3, w4)

(w2, w4, w3, w1)

(m4, m2, m3, m1)

(m1, m2, m3, m4)

(m3, m2, m1, m4)

(m2, m4, m3, m1)

1     2    3    4 1     2    3    4



The McVitie-Wilson Algorithm

m1 w1

m2 w2

m3 w3

m4 w4

(w3, w2, w1, w4)

(w1, w4, w3, w2)

(w1, w2, w3, w4)

(w2, w4, w3, w1)

(m4, m2, m3, m1)

(m1, m2, m3, m4)

(m3, m2, m1, m4)

(m2, m4, m3, m1)

1     2    3    4 1     2    3    4

Implementation: GS uses a queue while MW uses a stack for the remaining men



Greedy Matching
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M = Ø 
While there are edges remaining 

e = heaviest edge 
M = M U {e} 
remove edges incident on e

w(greedy) ≥ 0.5 w(optimal)



Computing a Greedy Matching using a 
Stable Marriage algorithm
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Using McVitie-Wilson directly 

m1

m3m4

(m3, m4, m2) (m1, m3, m4)

(m1, m2, m4)(m1, m3, m2)

m2

This is exactly the suitor-algorithm [Manne & Halappanavar 14]

which builds on: 
‣   The pointer algorithm [Manne & Bisseling 08] 
‣   The Preis algorithm [Preis 99]



Going parallel

t1

t2

t3

t4

Use compare-and-swap to protect “women”

Threads run either the Gayle-Shapley or  
the McVitie-Wilson algorithm

Implementations using both OpenMP and 
GPU



“Easy” problems
• Each man selects between log n and 2 log n women and ranks randomly.  
• Women rank men who rank them (randomly). 
• Expected total work n log n 

OpenMP:         Using 36 threads on two Intel Xeon E5-2699 processors  
GPU:               Tesla K40m with 2880 cores
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“Hard” problems
• Each man uses the same total ranking of all the women 
• Each woman uses the same total ranking of all the men. 

• Expect high contention for the same “women” 
• Total work will be (n+1)n/2
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Concluding Remarks
• Recent greedy b-matching algorithms also follows directly from algorithms 

for the many-to-many stable assignment problem. 

• Major open question [Manlove 13]: Is Stable Marriage in NC? 
‣ Maybe not so relevant… 

• Stable Marriage assumes sorted priority lists, whereas Greedy Matching 
makes no such assumption. 

‣ Preis solved Greedy Matching in O(m) time. 
‣ Can Stable Matching with unsorted weighted priority lists also be solved 

in O(m) time?



Gale-Shapley implementation
Place all vertices in queue Q 
while Q ≠ Ø 

u = Q.first() 
p = nextCandidate(u) 
while rp(u) > rp(suitor(p)) 

p = nextCandidate(u) 
if suitor(p) ≠ null 

Q.add(suitor(p)) 
suitor(p) = u 
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p p p

p

suitor(p)


