
On Stable Marriages and
Greedy Matchings

Fredrik Manne
University of Bergen, Norway

Md. Naim, Håkon Lerring, Mahantesh Halappanavar

Background

Objec&ve:	
‣ Formalize	the	connec&ons	between	the	Stable	Marriage	problem		

and	compu&ng	Greedy	Matchings.

Consequences:	
‣ Many	”new”	algorithms	for	compu&ng	GM	are	variants	of	algorithms	for	SM.	
‣ Parallel	algorithms	for	compu&ng	GM	can	also	be	applied	to	SM.	

The	Stable	Marriage	(SM)	problem	has		
a	long	and	rigorous	history.	

Greedy	Matchings	(GM)	have		
applica&ons	in	CSC	applica&ons.

The Stable Marriage Problem

m1 w1

m2 w2

m3 w3

m4 w4

(w3, w2, w1, w4)

(w1, w4, w3, w2)

(w1, w2, w3, w4)

(w2, w4, w3, w1)

(m4, m2, m3, m1)

(m1, m2, m3, m4)

(m3, m2, m1, m4)

(m2, m4, m3, m1)

1 2 3 4 1 2 3 4

The Gale-Shapley Algorithm

m1 w1

m2 w2

m3 w3

m4 w4

(w3, w2, w1, w4)

(w1, w4, w3, w2)

(w1, w2, w3, w4)

(w2, w4, w3, w1)

(m4, m2, m3, m1)

(m1, m2, m3, m4)

(m3, m2, m1, m4)

(m2, m4, m3, m1)

1 2 3 4 1 2 3 4

The McVitie-Wilson Algorithm

m1 w1

m2 w2

m3 w3

m4 w4

(w3, w2, w1, w4)

(w1, w4, w3, w2)

(w1, w2, w3, w4)

(w2, w4, w3, w1)

(m4, m2, m3, m1)

(m1, m2, m3, m4)

(m3, m2, m1, m4)

(m2, m4, m3, m1)

1 2 3 4 1 2 3 4

Implementation: GS uses a queue while MW uses a stack for the remaining men

Greedy Matching
4

35

2

1

6

M = Ø
While there are edges remaining

e = heaviest edge
M = M U {e}
remove edges incident on e

w(greedy) ≥ 0.5 w(optimal)

Computing a Greedy Matching using a
Stable Marriage algorithm

4

35

2

1

6

m1 w1

m2 w2

m3 w3

m4 w4

(w3, w4, w2)

(w1, w3, w4)

(w1, w2, w4)

(w1, w3, w2)

(m3, m4, m2)

(m1, m3, m4)

(m1, m2, m4)

(m1, m3, m2)

1 2

34

Using McVitie-Wilson directly

m1

m3m4

(m3, m4, m2) (m1, m3, m4)

(m1, m2, m4)(m1, m3, m2)

m2

This is exactly the suitor-algorithm [Manne & Halappanavar 14]

which builds on:
‣ The pointer algorithm [Manne & Bisseling 08]
‣ The Preis algorithm [Preis 99]

Going parallel

t1

t2

t3

t4

Use compare-and-swap to protect “women”

Threads run either the Gayle-Shapley or
the McVitie-Wilson algorithm

Implementations using both OpenMP and
GPU

“Easy” problems
• Each man selects between log n and 2 log n women and ranks randomly.
• Women rank men who rank them (randomly).
• Expected total work n log n

OpenMP: Using 36 threads on two Intel Xeon E5-2699 processors
GPU: Tesla K40m with 2880 cores

5M 10M 15M 20M 25M

0

0.2

0.4

0.6

0.8

1

1.2

N

T
im

e
(s
ec
on

d
s)

OpenMP: McVitie-Wilson
OpenMP: Gale-Shapley
GPU: McVitie-Wilson

1

5M 10M 15M 20M 25M

6

8

10

12

14

16

18

N

S
p
ee
d
u
p

Gale-Shapley OpenMP speedup
McVitie-Wilson GPU speedup

1

“Hard” problems
• Each man uses the same total ranking of all the women
• Each woman uses the same total ranking of all the men.

• Expect high contention for the same “women”
• Total work will be (n+1)n/2

100K 200K 300K 400K 500K

0

50

100

150

200

250

N

T
im

e
(s
ec
o
n
d
s)

OpenMP: McVitie-Wilson
OpenMP: Gale-Shapley
GPU: McVitie-Wilson

1

1 9 18 27 36

0

5

10

15

20

Threads

S
p
e
e
d
u
p

400K McVitie-Wilson

400K Gale-Shapley

500K McVitie-Wilson

500K Gale-Shapley

1

Concluding Remarks
• Recent greedy b-matching algorithms also follows directly from algorithms

for the many-to-many stable assignment problem.

• Major open question [Manlove 13]: Is Stable Marriage in NC?
‣ Maybe not so relevant…

• Stable Marriage assumes sorted priority lists, whereas Greedy Matching
makes no such assumption.

‣ Preis solved Greedy Matching in O(m) time.
‣ Can Stable Matching with unsorted weighted priority lists also be solved

in O(m) time?

Gale-Shapley implementation
Place all vertices in queue Q
while Q ≠ Ø

u = Q.first()
p = nextCandidate(u)
while rp(u) > rp(suitor(p))

p = nextCandidate(u)
if suitor(p) ≠ null

Q.add(suitor(p))
suitor(p) = u

(w3, w2, w1, w4)

(m4, m2, m3, m1)

u
p p p

p

suitor(p)

