
Solution of Problem 02-002 by the proposer. Let Rk denote the driving-point resistance

between two vertices a distance k apart in Qk. Suppose a unit current flows into the network

Qn+1 at vertex A = (1, 1, . . . , 1) and flows out from B = (0, 0, . . . , 0). Identify the cube

with the Hasse diagram of subsets of {1, 2, . . . , n+1} ordered by inclusion. Say that vertices

that correspond to k-element subsets are at level k in the network. By symmetry, all
(
n+1
k

)
vertices at level k are at the same potential, so they may be coalesced into one vertex without

changing externally observed electrical properties of the cube. Thus Qn+1 may be replaced

by a series-parallel network with n+2 vertices 0, 1, . . . , n+1. Vertex k of the series-parallel

network is obtained by coalescing all cube vertices at level k. The number of parallel edges

joining vertex k to vertex k + 1 is

(
n + 1

k

)
(n + 1 − k) =

(
n + 1

k + 1

)
(k + 1) = (n + 1)

(
n

k

)
, 0 ≤ k ≤ n.

Hence the resistor joining vertices k and k + 1 in the equivalent network has resistance
1

n+1

(
n
k

)−1
, and therefore

Rn+1 =
1

n + 1

n∑
k=0

(
n

k

)−1

.

The basic idea of this part of the argument is illustrated (for n = 2) by the following figure.
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Fig. 1 - Method 1 for Computing the Driving-Point Resistance.

To compute Rn+1 a second way, we follow Rennie’s approach in [4]. This makes use of

symmetry properties of the cube and the principle of superposition. Let C = (1, 1, . . . , 1, 0)

and D = (0, 0, . . . , 0, 1). If a unit current enters at A and exits at B (ground), then by

symmetry, the potentials at A,B,C,D are

v(A) = Rn+1, v(B) = 0, v(C) = Rn+1 − 1

n + 1
, v(D) =

1

n + 1
.



In the same way, if a unit current enters at C and exits at D (ground), the potentials are

v(A) = Rn+1 − 1

n + 1
, v(B) =

1

n + 1
, v(C) = Rn+1, v(D) = 0.

By the principle of superposition, if unit currents enter at A and C and exit at B and D,

then

v(A) − v(B) = v(C) − v(D) = 2Rn+1 − 2

n + 1
.

Now we use the fact that Qn+1 consists of two copies of Qn together with edges joining

corresponding vertices. In particular Qn+1 is so formed from the two n-dimensional cubes

induced by {(x1, x2, . . . , xn, 0)| xi ∈ {0, 1}} and {y1, y2, . . . , yn, 1)| yi ∈ {0, 1}}. It is easy

to see by symmetry that if unit currents enter at A and C and exit at B and D, there is

no current flow along the edges joining corresponding vertices of the aforementioned copies

of Qn. In particular v(A) = v(C) and v(B) = v(D). For the same reason, it is just as

if corresponding vertices in the two copies were not joined at all. Hence v(A) − v(B) =

v(A) − v(C) = Rn. Hence Rn = v(A) − v(B) = 2Rn+1 − 2/(n + 1). Thus we have the

recurrence

2k+1Rk+1 − 2kRk =
2k+1

k + 1
, k ≥ 0 (R0 = 0),

which gives

2n+1Rn+1 =
n∑

k=0

(2k+1Rk+1 − 2kRk) =
n∑

k=0

2k+1

k + 1
.

The basic idea of this part of the argument is illustrated (for n = 2) by the following figure.

≡
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Fig. 2 - Method 2 for Computing the Driving-Point Resistance.



Comparing the two results for Rn+1, we find

1

n + 1

n∑
k=0

(
n

k

)−1

=
n∑

k=0

2k−n

k + 1
=

n∑
k=0

1

2k(n + 1 − k)
,

so

n∑
k=0

(
n

k

)−1

= (n + 1)
n∑

k=0

1

2k(n + 1 − k)
.


