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1. Problem. We shall solve the following problem.

PROBLEM (P). (Rolewicz). Find all nonnegative and differentiable functions f : R — R
satisfying the inequality

(P) FO) = f(s) = F()t—s) > flt—5), tseR

(cf- 2] and [4], where the problem was originally stated, under the additional assumption

that f be even).

It turns out that the assumption is not needed; every solution of Problem (P) is auto-
matically a quadratic function (and therefore even).

We also find all pairs (f,g), f,¢9: R — R, satisfying the functional inequality obtained
from (P) by replacing f'(s) by g(s) as well as those which satisfy the related functional
equation (without any regularity assumptions on f and g).

2. Solution. We are going to prove the following theorem.

THEOREM 1. The only solutions f : R — R of problem (P) are given by the formula
(9) f(z) = Cz?, x eR,

where C' is a nonnegative constant.

Proof. If a function f : R — R is a solution to (P), then

f(0) = f'(0) =0

(put t = s = 01in (P) to get f(0) = 0 and then s = 0 in (P) to obtain f'(0)t <0, t € R,
yielding f’(0) = 0). Thus

=0.

(1) lim L)

s—0 s

Denote h :=t — s € R and rewrite (P) as

(2) F(s)-h< f(s+h) = f(s) = f(h),  sheR.



Now assume s > 0 to get that

(3) f’(S)th(SJrh)—f(h)_f(S)’ heR.s>o0.

S S S

Thanks to (1), when s — 0+, the RHS tends to f/'(h). Thus, the LHS is bounded from
above, and

!
2C'" = lim sup 1)
s—0+ S
exists. From (3) we get
(4) 2Ch < f'(h), h eR.

Now assume that s < 0 in (2), which gives us

fi(s)y o fls+h) = f(h)  f(s)

S - S

, heR,s <0.

As before, this implies that

/
2D := liminf f'(s)
s—0— S
exists and that
(5) 2Dh > f’(h), h e R.

Inequalities (4) and (5) together now imply that Ch < Dh for all h € R, and thus C' = D.
Now using (4) and (5) once more, we have f'(h) = 2Ch for all h € R, and taking f(0) =0
into account we get (S), which was to be proved. O

Remark. The proof of Theorem 1 is due to the second author. Earlier the other authors
had proved (S) with the aid of the following proposition.

PROPOSITION 1. Let f: R — R be an even, nonnegative, and differentiable function with
f(1) =1, satisfying inequality (P). Then we have the following assertions.

(a) Either [ is given by (S) with C =1 or there are an e > 0 and a,b € R, § < a < b,
such that f'(x) > 2z +¢ ,x € [a,b].

(b) If there exists a sequence (Ty,)nen converging to zero, x, > 0,n € N, such that f'(x,) >
2x,,n € N, then f is given by (S) with C = 1.



The first author was able to derive (S) from (P) having additionally assumed that f is
even, twice differentiable in a neighborhood of the origin, and it satisfies an initial condition;

cf. [1].

3. Pexider-type functional inequality. In connection with (P) let us consider the
following inequality:

(@) ft)=f(s) —g(s)(t—s) > f(t—s), tseR
We start with a simple lemma.

LEMMA 1. A pair (f, g) of functions, each mapping R into R, where f is differentiable in
R, f(0) =0, and g is arbitrary, satisfies inequality (Q) if and only if

(6) g(t) = f'(t) = f(0),  teR,

and f satisfies the inequality

(P') f@) = f(s) = [f'(s) = fO)t =) = f(t—s),  tseR

Proof. Let f and g, regular as required, satisfy (Q). For ¢t > s inequality (Q) may be written
in the form

f(t) = f(s)
t—s

f(t—s)
t—s

(7)

—g(s) >

whereas for ¢ < s we have the inequality opposite to (7). Since f is differentiable, we get
f'(s)—g(s) = f'(0), which is (6), and f satisfies (P"). The converse implication is obvious. [

Theorem 1 and Lemma 1 together yield the following result.

THEOREM 2. If f : R — R is a nonnegative and differentiable function with f'(0) = 0,
g : R — R is arbitrary, and they both satisfy inequality (Q)), then there is a C > 0 such that

ft)y=0Ct*, g(t) =2Ct, teR.
In the case where f in (Q) is an odd function we have the following theorem.

THEOREM 3. A pair (f, g) of functions, each mapping R into R, where f is differentiable
in R and odd, and g is arbitrary, satisfies inequality (Q) if and only if there is a C € R such
that

8) fOy=Ct,  gt)=0, teR



Proof. We have f(0) =0 as f is odd. Thus the lemma works. Since now f’ in (P’) is even,
on putting —s in place of s in (P') we get

O+ () = [f'(s) = f(OIt+5) = f(t+5),  siteR

With ¢ = 0 here we arrive at [f'(s) — f/(0)] - s < 0,s € R.
On the other hand, with —¢ in place of ¢ in (P’) we obtain

[f/(s) = fOJt+s) = f(t) + f(s) = f(t+s),  tseR

Letting ¢t = 0 here yields [f'(s) — f'(0)] - s > 0,s € R.
Consequently, f'(s) = f'(0), in turn f(s) = f'(0)s+B. But B = 0 as f is odd. Finally, by
(6), g(s) = 0,s € R. Thus (8) holds with C' = f’(0). The converse implication is obvious. [J

4. Pexider-type functional equation. For the functional equation (cf. inequality (Q))
(E) f@) = f(s)—g(s)t —s) = f(t—s), tseR,
we have the following result.

THEOREM 4. Let f,g: R — R be functions fulfilling equation (E). Then there exist a real
constant C' and an additive function a : R — R such that

(9) f(z) = a(z) + C2?, g(x) =2Cxz, z € R.

Conversely, the system of functions defined by (9), where a is an additive function and C € R,
is a solution of (E).

Proof. Setting s =0 in (E) we get

f(0)=9(0) =0
Put t + s instead of ¢ in (E) . We have
(10) F(t+s)— f(t) - f(5) = gls)t, s ER

Since the LHS of this equality is symmetric with respect to ¢t and s, so is its RHS. Thus
g(s)t = g(t)s, t,s € R.

Therefore there exists a constant C' € R such that g(z) = 2Cx, = € R. Moreover, now (10)
has the form

(11) F(t+s)— f(t) — f(s) =2Cts,  t,s€R.



We define the function a : R — R by the formula
a(x) := f(z) — Ca?, z € R.

According to (11) we obtain a(t + s) — a(t) — a(s) = 2Cts — C(t + s)> + Cs*> + Ct? = 0
for all ¢, s € R, which means that a is an additive function. The other part of the proof is
evident. O

Since every Lebesgue measurable additive function a : R — R is linear (cf. [3], for
example), Theorem 4 has the following corollary.

COROLLARY 1. Let f: R — R be a Lebesgue measurable function, and let g : R — R be an

arbitrary function. Then the pair of function (f,g) is a solution of functional equation (E)
if and only if there exist a real constants C and b such that

f(z) = C2® + b, g(x) =2Cxz, z € R.
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