
Solution of Problem 01-004 by A.M. Dawes (University of Western Ontario, London, ON,

Canada).

Solution of (a). Consider the diagonal m + n = k, where k ≥ 2. On this diagonal, each

dm,n can be written as am,n/bm,n where am,n is a positive integer and bm,n = 2
m+n−2 = 2k−2.

This form for the denominator bm,n follows immediately from the initial conditions and

the recurrence; we will show by induction on k that, for the numerator,

ai,k−i =
i−1∑
j=0

(
k − 1
j

)
, 1 ≤ i ≤ k − 1.

Basis (m+ n = 2): d1,1 = 1 =
∑0

j=0

(
1
j

)/
22−2.

Induction step (m + n = k + 1): for i = 1, we have a1,k = 1 =
∑0

j=0

(
k
j

)
; for i = k, we find

ak,1 = 2k − 1 =
∑k−1

j=0

(
k
j

)
. For 1 < i < k, we use the induction hypothesis on the diagonal

m+ n = k and the recurrence

ai,k+1−i = ai−1,k+1−i + ai,k+1−i−1

=
i−2∑
j=0

(
k − 1
j

)
+

i−1∑
j=0

(
k − 1
j

)

=
i−1∑
j=0

(
k

j

)
as required.

Therefore dm,n =
∑m−1

j=0

(
m+n−1

j

)/
2m+n−2.

Solution of (b). In particular,

am,m =
m−1∑
j=0

(
2m− 1

j

)
=
1

2

2m−1∑
j=0

(
2m− 1

j

)
=
1

2
· 22m−1 = 22m−2 = bm,m.

Therefore dm,m = 1.

Solution of (c). Consider the partial sums of the rows, i.e., let em,n =
∑n

j=1 dm,j for n ≥ 1.

Claim. These partial sums satisfy the recurrence

em,n = 1 +
em−1,n + em,n−1

2
for m,n > 1



with initial conditions

e1,n =
n∑

j=1

1

2j−1
= 2− 1

2n−1
,

em,1 = dm,1 =
2m − 1
2m−1

= 2− 1

2m−1
.

Proof of claim. The initial conditions are immediate; and for m,n > 1 we have

em,n =
n∑

j=1

dm,j = dm,1 +
n∑

j=2

dm,j

= 2− 1

2m−1
+
1

2

n∑
j=2

dm−1,j +
1

2

n∑
j=2

dm,j−1

= 2− 1

2m−1
+

em−1,n

2
− dm−1,1

2
+

em,n−1

2

= 1 +
em−1,n + em,n−1

2
.

Assuming convergence, we may now find the sums. Let lm denote the limit of the partial

sums of row m. Note first that the sum of the first row is 2, i.e., l1 =
∑∞

j=1 d1,j = 2. Then

for row m+ 1 we find lm+1 = 1 + (lm + lm+1)/2, and it follows that lm = 2m for m ≥ 1.

It remains to prove convergence; it suffices to show by induction on m that in each row

the partial sums are bounded by 2m. This is already done for row 1. For row m+1, proceed

by induction on n:

em+1,n = 1 +
em,n + em+1,n−1

2
.

By the induction hypothesis on m, em,n ≤ 2m; by the induction hypothesis on n, em+1,n−1 ≤
2(m+ 1); therefore em+1,n ≤ 1 + (m+m+ 1) = 2(m+ 1).

Editorial note. An alternative solution is provided by the method of generating functions.

It is convenient to extend the array [am,n] = [2
m+n−2dm,n] by setting

a0,n = 0, n ≥ 0 and am,0 = 2
m−1, m ≥ 1.

With this choice, the recurrence am,n = am−1,n + am,n−1 holds for all m,n ≥ 1. Let

F (x, y) =
∞∑

m=1

∞∑
n=1

am,n x
myn.



Note that
∞∑

m=1

am,0 x
my =

∞∑
m=1

2m−1 xmy =
xy

1− 2x.

Thus

F (x, y) =
∞∑

m=1

∞∑
n=1

(am−1,n + am,n−1)x
myn

= xF (x, y) +
xy

1− 2x + yF (x, y),

so F (x, y) = xy(1− 2x)−1(1− x− y)−1. For all m,n ≥ 1,

am,n = [x
myn]

xy

(1− 2x)(1− x− y)

= [xmyn]
xy

(1− 2x)(1− x)

∞∑
p=0

(
y

1− x

)p

= [xm]
x

(1− 2x)(1− x)n

= [xm]
x

(1− x)n+1

∞∑
q=0

(
x

1− x

)q

=
m−1∑
q=0

(
m+ n− 1
m− 1− q

)
=

m−1∑
k=0

(
m+ n− 1

k

)
.

The last line uses the familiar fact that [zk](1−z)−a =
(
k+a−1

k

)
. This gives the desired result

for part (a):

dm,n =
1

2m+n−2

m−1∑
k=0

(
m+ n− 1

k

)
.

For part (b), one can use the residue calculus to extract the diagonal terms of the generating

function. If |z| is sufficiently small and C = {w : |w| = r} where r < 1
2
, the diagonal part of

the generating function is
∞∑

m=1

am,m zm =
1

2πi

∫
C

F (w, z/w)

w
dw =

z

2πi

∫
C

dw

(1− 2w)(w − w2 − z)
.

The only contribution comes from the pole at w = (1 − √
1− 4z)/2, and straightforward

calculation gives
∞∑

m=1

am,m zm =
z

1− 4z .



Hence am,m = 4
m−1 and dm,m = 1. Part (c) is brief. The generating function for dm,n is

∞∑
m=1

∞∑
n=1

dm,n x
myn = 4F (x

2
, y

2
) =

xy

(1− x)(1− (x+ y)/2)
:= G(x, y).

Thus

∞∑
m=1

( ∞∑
n=1

dm,n

)
xm = G(x, 1) =

2x

(1− x)2
,

and one finds

∞∑
n=1

dm,n = [x
m]

2x

(1− x)2
= 2m, m ≥ 1.


