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The Transportation: More-for-less Criterion

Abstract

The transportation more-for-less criterion is related to the classical
transportation problem. For certain instances of this problem an increase in the
amount of goods to be transported may lead to a decrease in the optimal total
transportation cost. Even though the criteria has been known since the early days of
linear programming, it has got very little attention in the literature, and it seems to be
almost unknown to the majority of the LP-practitioners.

This paper presents necessary and sufficient conditions fer a transportation
cost matrix to be protected against the criteria. These conditions areyrather restrictive;
supporting the results reported from simulations that thecritegia “might occur quite
frequently. We also consider some post optimal conditions4#0rwhen the criteria may
occur. A simple procedure for modifying an existing ‘modelst0 exploit the criteria is

given and illustrated by examples.
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Duality
1 Introduction

The dncreasing use of spatial analytical methods to identify optimal locations
and efficient allegations has become a characteristic of operations in the private and
public sectors. As companies face constant pressure for cost reduction and efficient
operations, location and transportation strategies are required for efficient use of

limited resources.

Various location and allocation objectives may be supported by the inclusion
of constraints from the Natural Slack or Transportation Paradox frameworks. These
constraints, when incorporated into existing models, provide opportunities for a More
- for- Less solution which indicates improved system performance expressed either by

expenditure savings, service improvements or both simultaneously. The philosophy



behind the More-for-Less paradox is in tune with objectives of all classes of location
models. Indeed, the More-for-Less paradox searches for additional benefit from a
lower outlay of resources. Thus, the ability to exploit spatial relationships to extract

extra efficiency should be a critical issue in location modeling.

The classical transportation problem is the name of a mathematical model,
which has a special mathematical structure. The mathematical formulation of a large
number of problems conforms (or can be made to conform) to this special structure.
So the name is frequently used to refer to a particular form of mathematical model

rather than the physical situation in which the problem most natural originates.
The standard problem description is as follows:

A commodity is to be transported from each of miSeurces to each of n
destinations. The amounts available at each of the sourcgs are a;, I's,1, .. . ,m, and the
demands at the destinations are b; , j =1, ..., n réspectivelys The total sum of the
available amounts at the sources is equal 40 the sum of the demands at the
destinations. The cost of transporting one unity@f the commodity from source i to

destination j is cj; .

The goal is to determine thesamountsx;; to be transported over all routes (i, j)
such that the total transportation cost iSiminimized. The mathematical formulation of
this standard version of theytranspertation problem is the following linear program,
TP:

m n
Minimize Z =) > xc;

i=1 j=1

and x; 20 v (i,j)

An instance of TP is specified by an m x n cost matrix C = [c;], an n-
dimensional demand vector b = [b;] and an m-dimensional supply vector a = [a;]. All
the data are assumed to be nonnegative real numbers. We will use the notation
z(C, a, b) to denote the optimal objective value of an instance of TP specified by C, a
and b.



The so-called transportation criterion is the name of the following behaviour
of the transportation problem: Certain instances have the property that it is possible to

decrease the optimal objective value by increasing the supplies and demands. More
precisely, let a and b be two other supply and demand vectors, such that a > a and

n n n

b > b. Then the criteria occurs if and only if z(C, a, b) < z(C, a, b).

Example:1:

D, | D, | Supply
0, 50 | 300 5
o, 320 | 60 10

Demand | 7 8

Let

By MODI method, the optimum solution is givenfby
X11=5, X12=0, X»1=2 and X»»,=8 with mihZ = 1370.
Let us denote the same values in the matrices as follows:

{50 300]&:[5 10],b <fz, 8] amolx{5 O}
320 60 2 8

with Z(C,a,b)=1370.

Now on increasing a; and b, by ghe unit, i.e. let a=[6 10] andb=[7 8]
. . W 6 0| . A
The optimal solutiongis then: X = L 9} with z(C, a, b) = 1160. So one

more unit transportedwill4educe the optimal cost by 210.
Now thegmain focus is to identify where the value is to be increased and its

alterations to the remaining basic cells.

2 Historical facts

It is not quite clear when and by whom this criterion was first discovered.
Monge first formulated the transportation problem itself in 1781, which was solved by
geometrical means and Hitchcock ([11]) in 1941, and was independently treated by
Koopmans and Kantorovich. In 1951 Dantzig gave the standard LP- formulation TP
in [7] and applied the simplex method to solve it. Very efficient algorithms and

corresponding software have been developed for solving it.



The transportation criterion is, however, hardly mentioned at all where the
transportation problem is treated. Apparently, several researchers have discovered the
criteria independently from each other. But most papers on the subject refer to the
papers by Charnes and Klingman [6] and Szwarc [14] as the initial papers. In [6]
Charnes and Klingman name it the more-for-less criteria, and they write: The criteria
was first observed in the early days of linear programming history (by whom no one
knows) and has been a part of the folklore known to some (e.g. A.Charnes and
W.W.Cooper), but unknown to the great majority of workers in the field of linear
programming.

According to [4], the transportation criteria is known as Doigs criteria at the
London School of Economics, named after Alison Doig who usedit in exams etc.
around 1959 (Doig did not publish any paper on it).

Since the transportation criteria seems not to be Knowanste the majority of those
who are working with the transportation problem, oneymay be témpted to believe that
this phenomenon is only an academic curiosity;” which will most probably not occur,
in any practical situation. But that seems_not to%e true. Experiments done by Finke
[9], with randomly generated instances of the gramsportation problem of size 100x100
and allowing additional shipmentsy(post,optimal) show that the transportation costs
can be reduced considerably by expl@iting the criteria properties. More precisely, the
average cost reductions @achievedware reported to be 18.6% with total additional
shipments of 20.5%.

In a recentypaper 8], Deineko & al. develop necessary and sufficient
conditions fof'a caost matfix C to be protected against the transportation criteria. These

conditions are rather restrictive, supporting the observations by Finke.

3 Non-occurrence of the criteria
In [8] Deineko & al. give an exact characterization of all cost matrices C that

are protected against the transportation criteria. A protected cost matrix satisfies

z(C, a, b) < z(C, a, b) for all supply vectors a and a with a<a and for all

corresponding demand vectors b and b with b < b. So regardless of the choice of the
supply and demand vectors, the transportation criterion does not arise when the cost

matrix C is protected.



Theorem: 1:

A mxn cost matrix C = [c;; ] is protected against the transportation criteria if

and only if, for all integers g, r, s, twith1 <g,s<m,1 <r,t<n,q # s, r #t,

the inequality

Cqr < Cqt + Cyr 1)
is satisfied.
Proof:

Let C be protected against the transportation criteria.

To prove that (1) is satisfied.

If possible, suppose (1) is not true.

I.e. Cqr > Cqt + Cyr fOr someq, 1, s, t.

Then consider an instance where component g of the supplyavector, a; = 1, and
where all the other components are zero, i.e. a =0, i =, . @, H= g. Similarly, let
component r of the demand vector, b, = 1, and let allythe other components be zero,
ie.bj=0,j=1,...,nj=r.

Then clearly z(C, a, b) = cq.

Now let a be a new supply veetor which is different from a only in

n

component s such that as =£1, apdysimilarly let bbe different from b only in

n

component t such that b (&, Thema*™< aand b < b.
In this new instance @ne unit may be sent directly from source q to destination

t, and another unit may be sent from source s to destination r. The total cost of this is

n n

CqrtCsr. Our assumption then leads to z(C, a, b) > z(C, a, b), i.e. the criteria has
occurred, which iS’contradiction to the statement.
Hence, (1) is true when C is protected.

Note:
1. A quadruple (g, r, s, t) is considered to be Good quadruple if it is satisfied
by Cqr < Cqt + Cyr
2. Theorem (1) can be stated as, an mxn cost matrix C = (cj;) is protected
against the transportation criteria, if and only if C does not contain a bad
quadruple.



Example 2 : Consider the 4 x 5 cost matrix

4 15 6 13 14
16 9 22 13 16
8 5 11 4 5
12 4 18 9 10

(2)

Here we see immediately that c14 > €11 + C34, Which means that (1) is violated
forg=1,r=4,s=3,t=1. So Cis not protected against the transportation criteria.
Hence in O(mn) time whether or not a m x n cost matrix C is protected against

the transportation criteria. ([8])

4 Occurrence of the criteria
The dual problem corresponding to the linear programLP s the following
linear program, DP:
maximize ) a,u; + Y b;v;
i=1 j=1

subjecttoui+v; < cjj,i=1,....m; j=0 .., n (3)

Here the dual variables u;_andiy; cerrespond to the m first and the n last
equations of TP respectively. It is wellkknown that the constraint equations of TP are
linearly dependent and that thentank™ of the constraint matrix is m+n-1. So one
equation (any) is redundant,apd may be omitted. Thus any optimal solution to DP will
not be unique. In the following we will assume that the first constraint equation of TP
is omitted, apd that theyeorresponding dual variable, uy, is set to be zero, i.e. uy =0

throughout.

Any basic solution of TP has m + n - 1 basic variables. Let X = [x;; ] be an
optimal basic solution (also called an optimal transportation tableau) of TP and let B
be the set of index pairs (i,j) of all basic variables x;; in X. Then we know from
elementary LP-theory that u; + v; - ¢ij = 0 for all (i,j) € B, and that x;; = O for all
(ij)¢B.



The optimal objective value may then be written as:

Z(C,ab)= i CX.

i-1 j-1
m n m n

= (Cu_ul_Vj)><ij+z (”i*Vj)Xij
i=l j=1 i=1 j=1
m n

=Y u@a; + > vb,
i=1 j=1

We will now look at some post optimal conditions, which are sufficient for the
occurrence of the criteria. We consider only the case where an instance is improved
by increasing a single supply a; and a single demand b; by the same amount (all the
other data are unchanged). A procedure for improving an optimal transportation

tableau when the conditions are satisfied will be illustrated.

Theorem: 2:
Assume that indexes p and g exist, 1 < pg&m; 1%<< q < n, such that
Up + Vg <O. (4)

Assume further that a positive numbeg,0 exists, such that when supply ap is

n

replaced by a, = a, +0, and demand b is replaced by kAJq = by +6, a basic
feasible solution for the newginstance can be found which is optimal and has
the same set B of basic variables. Then the criteria will occur.
Proof :
Since the optimal solution for the new instance has the same set B of basic
variables, thefoptimal dual solution is unchanged. So the new optimal objective value

is:

Z(C,;,sziuiai +upe+zn:vjbj+vqe
i=1 j=1
=Z(C,a,b)+e(up+vq)
<Z(C,a,b)
Since 6 >0 andup +V, <0 :>e(up+vq)<0

AN

Therefore, z(C,a,b) < z(C, a, b).



Existence of positive 0 :

A 4x5 instance of TP is given by the cost matrix (2) in Example 2 and the
following supply and demand vectors:

a=[718615]andb=[41112811]

The optimal transportation tableau for this instance is:

V,=0|v,=-6|Vv,=6|v,=-2|Vv.=0
u, =0 7
u, =15 4 6 8
u, =5 5 1
u, =10 5 10

e Here the optimal dual values are written above and ‘on, the left of the
tableau.
e The total optimal cost of this solution is 444.
e We observe that the set of index pairs for the optimal’basic variables is:
B ={(1,3), (2,1), (2,242, 4), (3,3), (3, 5), (4, 2), (4,5)}.

e We also observe that us + v4 = -2 < O

So let us see if it is possible to increasean= 7 and b, = 8 by a number 6 >0
such that the present optimal basic feasible solution can be modified to become

optimal for the new instance with thefSame Set of basic variables:

7+ 0 a,=7+6
4 6-06 8+6 a, =18
5-0 1+0 a, =6
5+9 10-6 | a,=15
b,=44b,=11|b, =12 | b,=8+6 | b, =11

Here the Supplies and the demands are written to the right and below the
tableau. From this tableau we observe that 6 may be selected as any number
0<6 <5.

If 6 =4 is chosen, the new optimal transportation tableau is:

11 a, =11

4 2 12 a, =18

1 5 a; =6

9 6 a, =15
b,=4|b,=11|b, =12 |b, =12 | b, =11



VAN

The cost of this solution is z(C,a,b) = z(C,a,b) +6 (upt+vg) = 444 + 4(-2) =
436. So shipping 4 units more will reduce the total transportation cost by 8 units.

Note that if 6 = 5 is chosen (the maximum value for6), the new optimal
transportation tableau will be degenerate (one of the basic variables becomes zero).

We observe that in order to determine the upper bound for 6, a subset Sc B of
index pairs has been selected (S = B\{(2, 1)} in our example). Now suppose we link
the elements of S to form a directed path DS:

DS ={(1,3),(3,3),(3,5), (4,5), (4,2), (2,2), (2,4)}.

e This ordered set defines a directed path, which starts at the basic element

(1, 3) and ends at (2, 4).

e It is alternating in the sense that 6 is added toythe tableau elements
corresponding to the odd numbered elements @F DS and i1s Subtracted from
those corresponding to the even numbered,elements of DS.

e DS consists of an even number of pegpendicular links.

e DS will consist of index pairs for amodd number of (perpendicular) basic
elements of the tableau.

e The change in the problem@ccurs when there exist the path.

e For more than ong ui+yfAs 0 maximum importance is to select the
combination where i row and " column have only one basic cell.
(Example 5 forimore‘than one)

In general,4f indexesp and q exist such that (4) is satisfied, try to determine an
upper bound for ) byieonstructing a directed alternating path DS, starting at a basic
element (p,-) pfrow p of the optimal transportation tableau and ending at a basic
element (-, q) in column q (in example p = 1 and q = 4).

Let DS, and DS, denote the odd and even numbered elements of DS
respectively, such that DS = DS, Y DSe. The elements of the cost matrix C

corresponding to the index pairs in DS are related by the following lemma.

10



Lemma 1:
CDS = (i,j)ZE[:)sCOij - (i,j)ze[:)geij = U, +V,
Proof:
Since the elements of DS are (perpendicular) alternating, we have that
CDS = Cpit —Cij, +Cij, —Cij,
Since c;; = u; +v; for all (i,j) e B and Sc B, we have
CDS = (UptVjz) — (Uiz+vjr) + (Uin+Vj2) - coveneees - (Uirtvie) + (Uit +vg)
= Up + Vg
We add 6 to the tableau elements corresponding to DS, and subtract 6 from
the tableau elements corresponding to DSe. The upper boundgfor 6%isilimited by the
smallest basic element of the optimal transportationtableaty, from which 0 is

subtracted. So we have the following result:

Corollary 1:

A positive 0 exists if and only if X0, (*(i, j) € DS..

This corollary tells us that if the optimal solution of TP is nondegenerate, and
there are components of the gptimal,dual solution satisfying (4), the criteria will
occur. In case of degeneracy the criteria will still occur if the index pairs of DS, do
not include any degenerate,eléments of the optimal tableau (Example 5).

Repeated use of the process is of course possible if more than one pair of
optimal dual values satisfy (4) (the dual solution is unchanged). However, if the
maximal valte,of 0 is selected, the new optimal tableau will be degenerate, and this

may reduce the possibility of repeated success (as Example 5 also shows).

Example 3:

There are three origins (plants) and four destinations (distribution centers).
The amounts (number of units of the product) available at each of the origins, the
demands at each of the destinations and the transportation cost from each origin i to

each destination j are given respectively by:

3 2 7 6
a=[50006000 2500 ], b =[6000 40002000 1500 Jand C=|7 5 2 3
2 5 4 5

11



It is easy to verify that this cost matrix is not protected against the
transportation criteria. The optimal transportation tableau for this instance is:
v,=3|Vv,=2|Vv,=-1|v,=0
u, =0 | 3500 | 1500
u,=3 2500 | 2000 | 1500
u, =-11| 2500

The optimal total cost is 39500.

The assumption (4) is satisfied by p = 3 and g = 3 since uz +v3 = -2<0.

A directed path DS starting in (3, 1) and ending in (2, 3) can be constructed.
Since the optimal solution is non-degenerate, we know from Corollary 1 that a
positive number 6 can be found, which when added to az and bs*will give a new
optimal tableau with a lower cost.

To determine an upper bound for6, we considef the fellowing transportation

tableau:
3500-0 | 1500+60 a, = 5000
2500-0 2000+ 0 1500 a, = 6000
2500+ 0 a, =2500+6
b, =6000 | b, =4000 | b, =2000+ 6 | b, = 1500

We see that any value ofy@_such that 0 < 6 <2500 will give a new optimal
solution with a lower costi\lf#0 =2500 is selected, the total cost is reduced by 5000
(to 34500). Repedted use ofithe process is then not possible (due to degeneracy, no
positive 6 cambe foundyfor the other dual combinations satisfying (4)).

Example 4:

Three power plants supply the needs for electricity of four cities. The number
of kilowatt-hours (in millions) each power plant can supply, and the (peak) power
demands at the four cities are respectively:

a=[355040]and b=[45203030].
The cost of sending one million kwh from plant i to city j is given by the

following matrix:

8 6 10 9
C=|9 12 13 7
14 9 16 5

12



This matrix is not protected against the transportation criteria. But the optimal

solution of this instance is:

V,=6|Vv,=6|v,=10|v,=2
u, =0 10 25
u,=3| 45 5
u, =3 10 30

Here there are not any indexes p and g such that (4) is satisfied. So the
criterion does not occur.

However, from Theorem 1 and Lemma 1 we see that if the supplies and
demands were such that the optimal set B of index pairs includedjthe index pairs
(1,3),(3,3) and (3,4), or the index pairs (1,1),(3,1) and (3,4), the,Criteria may occur. To
confirm this, suppose we have another instance where the cost,mairix C is the same,
but the supplies and the demands are:

a=[452060]and b =1[352040 30 ]

An optimal transportation tableau (not unigue) for this instance is:

vV, =8|Vv,=3]|v,=104 vy =l
u,=01| 15 30
u,=1| 20
u, =6 20 10 30

The total cost is 1090,
Since ui+vi= -1, the total cost will be reduced by 6 if supply a; and demand

b4 are both ingreased by04 where 0 < 6 < 10.

Another@ptimal transportation tableau for this instance is:

v;=8|v,=3|v,=10|v,=-1
u,=0 5 40
u,=1| 20
u;,=6| 10 20 30

Again we see that the total optimal cost will decrease if we increase the same

supply and demand as we did in the previous tableau.

13



Example 5:

5 8
Leta=[106154],b=[514106]and |, 4

7
5

17 15 3 16
15 21 8

The optimal TP-tableau for this instance is:

V,=5|v,=8|v,=-4]v,=3
u, =0 10
u, =2 0 6
u, =7 5 4 6
u,=9 4

The total cost of this solution is 255.

Since u; + v3 = - 4 and u; + v3 = -2, we have two possible g points for
improvements. If we start with the first alternative, we dncreas dbsby 6 =4
and get the following tableau:

14 Q\
0 6
5|0 |10
4

The total cost of this solutiongi -4 * 4 = 239. This solution cannot be
further improved (trying to increase a, and bs yields 6 =0).

But if we start to he optimal TP tableau by first increasing a; and bs

(again by 6 =4), we get the following tableau:
10

4

The total cost of this solution is 255 - 2 * 4 = 247. This solution cannot be

improved further (trying to increase a; and bs yields 6 = 0).

14



6 Conclusions:

We have considered the classical transportation problem and studied the
occurrence of the so-called transportation criteria (also called the more-for-less
criteria). Even if the first discovery of the criteria is a bit unclear, it is evident that it
has been known since the early days of LP. It has, however, got very little attention in
the literature. The main reason for this may be that it is considered as a rather odd
phenomenon, which hardly occurs, in any practical situation.

The simulation research reported by Finke in [9] indicates, however, that the
criteria may occur quite frequently. The rather restrictive conditions for a cost matrix
to be protected against the criteria (see Theorem 1) point in the same direction.

We therefore urge that the transportation criteria should beigiven much more
attention. In addition we hope that a lot of the existing excellentSeftware for TP will
be extended to include at least a preprocessing routine for deeiding whether the cost
matrix is protected or not against the criteria. If the c@st matrix is not protected, and
there are optimal dual variables satisfying (4)g#@n optionallowing post processing of
the optimal solution should be available. The cost of these additional computations is
modest and may provide valuable new insightiimithe problem from which the data for

the actual TP-instance originates.

References

[1] Ahuja R.K., T.[aMagnanti, J.B.Orlin: Network Flows: Theory, Algorithms
and Applications,\Prentice Hall, INC, Upper Saddle River, NJ, 1993.

[2] Anderson "DR., D.J.Sweeny, T.AWilliams: An Introduction to
Management Science, Eight Edition, West Publishing Company, St.Paul,
MN, 1997.

[3] Appa G.M.: The Transportation Problem and Its Variants, Operational
Research Quarterly, Vol. 24, 1973, pp. 79-99.

[4] Appa G.M.: Reply to L.G.Proll, Operational Research Quarterly, Vol. 24,
1973, pp. 636-639.

[5] Berge C.: The Theory of Graphs and its Applications (translated by Alison
Doig), Methuen, London, 1962.

[6] Charnes A. and D.Klingman:The more-for-less criteria in the distribution
model, Cachiers du Centre dEtudes de Recherche Operationelle, Vol. 13,
1971, pp. 11-22.

15



[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

Dantzig G.B.: Application of the simplex method to a transportation
problem, in Activity Analysis of Production and Allocation
(T.C.Koopmans, ed.), Wiley, New York, 1951, pp. 359-373.

Deineko V.G., B.Klinz, G.J.Woeginger: Which matrices are protected
against the transportation criteria?, Discrete Applied Mathematics, Vol.
130, 2003, pp. 495-501.

Finke G.: A unified approach to reshipment, overshipment and
postoptimization problems, Lecture notes in Control and Information
Science, Vol. 7, Springer, Berlin, 1978, pp. 201-208.

Hadley G.: Linear Programming, Addison-Wesley, Boston, MA, 1962.
Hitchcock F.L.: The distribution of a product from sevexal resources to
numerous localities, Journal of Mathematical Physiesi\/ol. 20, 1941, pp.
224-230.

Papadimitriou C.H., K.Steiglitz: Combinaterial Optimization: Algorithms
and Complexity, Prentice-Hall, INC#Englewood Cliffs, NJ, 1982.

Proll L.G.: A Note on the Transpertation Problem and Its Variants,
Operational Research Quarterly, Vol®24, 1973, pp. 633-635.

Szwarc W.: The Transporiation Criteria, Naval Research Logistics
Quarterly, Vol. 18, 1973 4pp185-202.

Winston W.: Introductiensto Mathematical Programming, Second Edition,
Duxbury Press, Belmont, CA, 1995.

16



