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Abstract

We study approximations of optimization problems with probabilistic constraints in which the original
distribution of the underlying random vector is replaced with an empirical distribution obtained from
a random sample. We show that such a sample approximation problem with risk level larger than the
required risk level will yield a lower bound to the true optimal value with probability approaching one
exponentially fast. This leads to an a priori estimate of the sample size required to have high confidence
that the sample approximation will yield a lower bound. We then provide conditions under which solving
a sample approximation problem with a risk level smaller than the required risk level will yield feasible
solutions to the original problem with high probability. Once again, we obtain a priori estimates on the
sample size required to obtain high confidence that the sample approximation problem will yield a feasible
solution to the original problem. Finally, we present numerical illustrations of how these results can be
used to obtain feasible solutions and optimality bounds for optimization problems with probabilistic
constraints.

Keywords: Probabilistic Constraints, Chance Constraints, Monte Carlo, Stochastic Programming,
Large Deviation

1 Introduction

We consider optimization problems with probabilistic or chance constraints of the form

min
{
f(x) : x ∈ X, Pr

{
G(x, ξ) ≤ 0

}
≥ 1− ε

}
(PCP)

where X ⊂ Rn represents a deterministic feasible region, f : Rn → R represents the objective to be
minimized, ξ is a random vector with suport Ξ ⊆ Rd, G : Rn ×Rd → Rm is a given constraint mapping
and ε is a risk parameter chosen by the decision maker, typically near zero, e.g., ε = 0.01 or ε = 0.05. Such
problems are sometimes called probabilistic programs. In PCP a single probabilistic constraint is enforced
over all rows in the constraints G(x, ξ) ≤ 0, rather than requiring that each row independently be satisfied
with high probability. Such a constraint is known as a joint probabilistic constraint, and is appropriate in a
context in which it is important to have all constraints satisfied simultaneously and there may be dependence
between random variables in different rows.

Problems with joint probabilistic constraints have been extensively studied; see [24] for background and
an extensive list of references. Probabilistic constraints have been used in various applications including
supply chain management [16], production planning [20], optimization of chemical processes [12, 13] and
surface water quality management [29].
∗This research has been supported in part by the National Science Foundation under grants DMI-0133943 and DMI-0522485.
†The authors express thanks to Alexander Shapiro for his helpful comments and suggestions related to this work.
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Unfortunately, probabilistic programs are still largely intractable except for a few very special cases.
There are two primary reasons for this intractability. First, in general, for a given x ∈ X, the quantity
Pr
{
G(x, ξ) ≤ 0

}
is hard to compute, as it requires multi-dimensional integration, and hence just checking

feasibility of a solution is difficult. Second, the feasible region defined by a probabilistic constraint generally
is not convex. In this paper, we study how the difficulty in checking feasibility can be addressed by solving
a sample approximation problem based on a Monte Carlo sample of ξ. In particular, we study how this
approximation can be used to generate feasible solutions and optimality bounds for general probabilistic
programs.

The sample approximation we study is a probabilistic program in which the original distribution of the
random vector ξ is replaced with the empirical distribution obtained from the random sample. We show that
such a sample approximation problem with risk level larger than the nominal risk level ε will yield a lower
bound to the true optimal value with probability approaching one exponentially fast. This leads to an a
priori estimate of the sample size required to have high confidence that the sample approximation will yield
a lower bound. We also discuss alternative means of generating lower bounds, which can be used regardless
of the sample size used. We then provide conditions under which solving a sample approximation problem
with a risk level smaller than ε will yield feasible solutions to the original problem with high probability.
Once again, we obtain a priori estimates on the sample size required to obtain high confidence that the
sample approximation problem will yield a feasible solution to the original problem.

Recently, a number of approaches have been proposed to find approximate solutions to probabilistic
programs; the common theme among these is that they all seek “safe” or conservative approximations which
can be solved efficiently. That is, they propose approximation problems which are convex and yield solutions
which are feasible, or at least highly likely to be feasible, to the original probabilistic program. Approaches
of this type include: the scenario approximation method studied by Calafiore and Campi [7, 8] and extended
by Nemirovski and Shapiro [21]; the Bernstein approximation scheme of Nemirovski and Shapiro [22]; and
robust optimization e.g., [4, 6, 10]. The conservative approximations, when applicable, are attractive because
they allow efficient generation of feasible solutions. In particular, they can yield feasible solutions when the
probabilistic constraint is “hard,” that is, with ε very small, such as ε = 10−6 or even ε = 10−12. However,
in a context in which ε is not so small, such as ε = 0.05 or ε = 0.01, the probabilistic constraint is more likely
to represent a “soft” constraint, one which the decision-maker would like to have satisfied, but is willing
to allow a nontrivial chance that it will be violated if doing so would sufficiently decrease the cost of the
implemented solution. In this latter context, it would be desirable to obtain solutions which are feasible
to the probabilistic constraint along with an assurance that the solutions are not much more costly than
the lowest cost solution attaining the same risk level. In this way, the decision-maker can be confident
they are choosing from solutions on the efficient frontier between the competing objectives of cost and risk.
Unfortunately, the recently proposed conservative approximations say very little in terms of how conservative
the solutions are. In particular, it is generally not possible to make a statement about how much worse the
objective is relative to the optimal value at a fixed risk level ε.

The scenario approximation methods are most similar to the sample approach we study in that they
solve an approximation problem based on an independent Monte Carlo sample of the random vector. For
example, the scenario approximation of [7, 8] takes a sample ξ1, . . . , ξN and solves the problem

min
x∈X

{
f(x) : G(x, ξi) ≤ 0 i = 1, . . . , N

}
. (1)

That is, the scenario approximation enforces all of the constraints corresponding to the sample taken. When
X ⊆ Rn is a convex set, f is convex andG is convex in x for each ξ, they show that the scenario approximation
problem will yield a feasible solution to PCP with probability at least 1− δ for

N ≥ 2
ε

log
(

1
δ

)
+ 2n+

2n
ε

log
(

2
ε

)
. (2)

In addition, under the stated convexity assumptions, the scenario approximation problem remains a convex
program. An advantage of this approach relative to the approximations [4, 6, 10, 22] is that the only
assumption that is made on the distribution of ξ is that it can be sampled from.

The key difference between the sample approximation we study and scenario approximation is that we
allow the risk level in the sample approximation problem to be positive, that is, we do not require that
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all sampled constraint sets be satisfied. Instead, the constraint sets which will be satisfied can be chosen
optimally. The disadvantage of this scheme is that the sample approximation problem with positive risk level
has a non-convex feasible region, and hence may be difficult to solve despite having a simplified probabilistic
structure. However, in some special cases, such as when randomness appears only in the righ-hand side of
the constraints, the sample approximation problem may be tractable, see [19, 18].

In the context of generating feasible solutions for PCP, our sample approximation scheme includes as
a special case the scenario approximation of [7, 8] in which the constraints corresponding to all sampled
vectors ξi are enforced. In this special case, we obtain results very similar to those in [8] in terms of how
many samples should be used to yield a solution feasible to PCP with high probability. However, our
analysis is quite different from the analysis of [8], and in particular, requires a significantly different set of
assumptions. In some cases our assumptions are more stringent, but there are also a number of cases in
which our assumptions apply and those of [8] do not, most notably if the feasible region X is not convex,
as in the case of a mixed-integer program. Thus, our results complement those of [8] in two ways: first we
show that sample approximations with positive risk levels can be used to yield feasible solutions to PCP,
and second we relax the convexity assumptions.

The sample approximation problem we study can be thought of as a variation of the well studied Sample
Average Approximation (SAA) approach, see e.g. [1, 9, 15, 28]. The difference is that the approximation we
study enforces a sample average constraint involving expectations of indicator functions, whereas the SAA
approach typically optimizes a sample average objective. Shapiro [27] and Wang [31] have considered SAA
approximation for expected value constraints. However, in these works, the function taken under expectation
in the constraints is assumed to be continuous, and hence these results cannot be directly applied because of
the discontinuity of indicator functions. In [2] a model with expected value constraints in which the function
taken under expectation is not necessarily continuous is considered, and hence their analysis does apply to
the case of probabilistic constraints. However, they consider only the case in which the feasible region is
finite, and they only discuss the theoretical rate of convergence. In contrast, we begin with a similar analysis
for the finite feasible region case, but then extend the analysis to a number of significantly more general
settings. In addition, we separate the analysis of when the sample approximation will be likely to yield a
lower bound, and when it will be likely to yield feasible solutions. This separate analysis allows for the
development of methods which yield optimality statements which hold with high probability.

Finally, we mention the work of Vogel [30], which considers convergence properties of the sample ap-
proximation we use for probabilistic programs. When only the right-hand side is random with continuous
distribution, it is shown that the probability that the distance between the sample feasible region and true
feasible region is larger than any positive threshold decreases exponentially fast with the size of the sample.
However, the convergence rate has poor dependence on the dimension of the random vector, implying that
the number of samples required to yield a reasonable approximation would have to grow exponentially in
this dimension. Better convergence is demonstrated for the case of random right-hand side with discrete
distribution. For the general case, linear convergence is demonstrated in the case of continuous distributions.
Our analysis of the sample approximation problem extends these results by improving on the convergence
rates and by analyzing what happens when the sample approximation problem is allowed to have different
risk level than the nominal risk level ε. This allows the sample approximation problem to be used to generate
feasible solutions and optimality bounds.

The remainder of this paper is organized as follows. In Section 2 we present and analyze the sample
approximation scheme. We present results of a preliminary computational study of the use of the sample
approximation scheme in Section 3. We close with concluding remarks and directions for future research in
Section 4.

2 Analysis of Sample Approximation

We now study how Monte Carlo sampling can be used to generate probabilistically constrained problems
with finite distribution which can be used to approximate problems with general distributions. Let us restate
PCP as

z∗ε = min
{
f(x) : x ∈ Xε

}
(Pε)

3



where

Xε =
{
x ∈ X : Pr

{
G(x, ξ) ≤ 0

}
≥ 1− ε

}
.

We assume z∗ε exists and is finite. For example, if X is compact and G(x, ξ) is affine in x for each ξ ∈ Ξ, then
Xε is closed [11] and hence compact, and so if f(x) is continuous then an optimal solution exists whenever
Xε 6= ∅. Furthermore, we take as an assumption the measurability of any event S taken under probability,
such as the event {G(x, ξ) ≤ 0} for each x ∈ X.

If X is a polyhedron, f(x) = cx, G(x, ξ) = ξ−Tx (d = m) then we obtain the probabilistically constrained
linear program with random right-hand side

min
{
cx : x ∈ X,Pr

{
Tx ≥ ξ

}
≥ 1− ε

}
. (PCLPR)

We can also model a two-stage problem in which we make a decision x and wish to guarantee that with
probability at least 1 − ε there is a feasible recourse decision y satisfying Wy ≥ H(x, ξ), where W is an m
by l matrix, and H : Rn ×Rd → Rm. This is accomplished by letting G : Rn ×Rd → R be defined by

G(x, ξ) = min
µ,y
{µ : Wy + µe ≥ H(x, ξ), µ ≥ −1}

where e ∈ Rm is a vector of all ones. Indeed, G(x, ξ) ≤ 0 if and only if there exists y ∈ Rl and µ ≤ 0 such
that Wy + µe ≥ H(x, ξ), which occurs if and only if there exists y ∈ Rl such that Wy ≥ H(x, ξ).

Due to the general difficulty in calculating Pr
{
G(x, ξ) ≤ 0

}
for a given x ∈ X, we seek to approximate

Pε by solving a sample approximation problem. We let ξ1, . . . , ξN be an independent Monte Carlo sample
of the random vector ξ. Then, for fixed α ∈ [0, 1) the sample approximation problem is defined to be

ẑNα = min
{
f(x) : x ∈ XN

α

}
(PNα )

where

XN
α =

{
x ∈ X :

1
N

N∑
i=1

I

(
G(x, ξi) ≤ 0

)
≥ 1− α

}
where I

(
·
)

is the indicator function which takes values one when · is true and zero otherwise. We adopt the
convention that if XN

α = ∅ then ẑNα = +∞, whereas if PNα is unbounded, we take ẑNα = −∞. We assume
that, except for these two cases, PNα has an optimal solution. This assumption is satisfied, for example, if X
is compact, f(x) is continuous and G(x, ξ) is continuous in x for each ξ ∈ Ξ, since then XN

α is the union of
finitely many compact sets (in this case ẑNα = −∞ is also not possible). If α = 0, the sample approximation
problem PN0 corresponds to the scenario approximation of probabilistic constraints, studied in [8] and [21].
Our goal is to establish statistical relationships between problems Pε and PNα for α ≥ 0. We first consider
when PNα yields lower bounds for Pε, then consider when PNα yields feasible solutions for Pε.

2.1 Lower Bounds

We now establish a bound on the probability that PNα yields a lower bound for Pε. Let

ρ(α, ε,N) =
bαNc∑
i=0

(
N

i

)
εi(1− ε)N−i.

ρ(α, ε,N) represents the probability of having at most bαNc “successes” in N independent trials, in which
the probability of a success in each trial is ε.

Lemma 1. Assume Pε has an optimal solution. Then,

Pr
{
ẑNα ≤ z∗ε

}
≥ ρ(α, ε,N).
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Proof. Let x∗ ∈ Xε be an optimal solution to Pε. Then, Pr
{
G(x∗, ξi) � 0

}
≤ ε for each i. Hence, if we call the

event {G(x∗, ξi) � 0} a success, then the probability of a success in trial i is φ̄(x∗) := Pr
{
G(x∗, ξi) � 0

}
≤ ε.

By definition of XN
α , x∗ ∈ XN

α if and only if

1
N

N∑
i=1

I

(
G(x∗, ξi) ≤ 0

)
≥ 1− α ⇔ 1

N

N∑
i=1

I

(
G(x∗, ξi) � 0

)
≤ α

⇔
N∑
i=1

I

(
G(x∗, ξi) � 0

)
≤ bαNc.

Hence, Pr
{
x∗ ∈ XN

α

}
is the probability of having at most bαNc successes in N trials. Also, if x∗ ∈ XN

α then
ẑNα ≤ z∗ε . Thus,

Pr
{
ẑNα ≤ z∗ε

}
≥ Pr

{
x∗ ∈ XN

α

}
= ρ(α, φ̄(x∗), N) ≥ ρ(α, ε,N)

since ρ(α, ε,N) is decreasing in ε.

For example, if α = 0 as in previously studied scenario approximation [8, 21], then we obtain Pr
{
ẑNα ≤

z∗ε
}
≥ ρ(0, ε, N) = (1 − ε)N . For this choice of α, it becomes very unlikely that the sample approximation

PNα will yield a lower bound as N gets large. For α > ε we see different behavior: the sample approximation
yields a lower bound with probability approaching one exponentially fast as N increases. The proof is based
on Hoeffding’s inequality.

Theorem 2 (Hoeffding’s Inequality [14]). Let Y1, . . . , YN be independent random variables with Pr
{
Yi ∈

[ai, bi]
}

= 1 where ai ≤ bi for i = 1, . . . , N . Then, if t > 0

Pr
{ N∑
i=1

(Yi − E[Yi]) ≥ tN
}
≤ exp

{
− 2N2t2∑N

i=1(bi − ai)2

}
.

Theorem 3. Let α > ε and assume Pε has an optimal solution. Then,

Pr
{
ẑNα ≤ z∗ε

}
≥ 1− exp

{
−2N(α− ε)2

}
.

Proof. Let x∗ be an optimal solution to Pε. As in the proof of Lemma 1, if x∗ ∈ XN
α then ẑNα ≤ z∗ε .

For i = 1, . . . , N let Yi be a random variable taking value 1 if G(x∗, ξi) � 0 and 0 otherwise. Then,
Pr
{
Yi ∈ [0, 1]

}
= 1 and E[Yi] ≤ ε. Hence,

Pr
{
ẑNα > z∗ε

}
≤ Pr

{
x∗ /∈ XN

α

}
= Pr

{ 1
N

N∑
i=1

Yi > α
}

≤ Pr
{ 1
N

N∑
i=1

(Yi − E[Yi]) > α− ε
}

≤ exp
{
−2N2(α− ε)2

N

}
= exp

{
−2N(α− ε)2

}
where the first inequality follows since E[Yi] ≤ ε and the second inequality follows from Hoeffding’s inequality.

Theorem 3 indicates that by taking a risk parameter α > ε in our sample approximation problem, we
will obtain a lower bound to the true optimal value with probability approaching one exponentially fast as
N increases. Stated another way, suppose we solve a sample approximation problem PNα with α = ε. Then
for any γ > 0 such that γ < ε, the optimal value of this problem, ẑNε will be a lower bound to the optimal
value of Pε−γ with probability approaching one exponentially fast with N . If γ is small this states that the
optimal solution to the sample problem will have cost no worse than any solution that is “slightly less risky”
than the nominal risk level ε.
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Theorem 3 immediately yields a method for generating lower bounds with specified confidence 1 − δ,
where δ ∈ (0, 1). If we select α > ε and

N ≥ 1
2(α− ε)2

log
(1
δ

)
then Theorem 3 ensures that ẑNα ≤ z∗ε with probability at least 1− δ. Indeed, with this choice of α and N ,
we have

Pr
{
ẑNα > z∗ε

}
≤ exp

{
−2N(α− ε)2

}
≤ exp

{
− log

(1
δ

)}
= δ.

Because 1/δ is taken under logarithm, we can obtain a lower bound with high confidence, i.e. with δ very
small, without increasing the sample size N too large. On the other hand, the required sample size grows
quadratically with 1/(α− ε) and hence will be large for α very close to ε.

Lemma 1 can also be used to obtain lower bounds with specified confidence, using the bounding procedure
proposed by Nemirovski and Shapiro [22]. They restrict α = 0 in the sample approximation, but the technique
can be applied in exactly the same way when α > 0, and it is likely this can make the bounding technique
significantly more powerful. The idea is as follows. Take M sets of N independent samples of ξ, given by
ξi,j for j = 1, . . . ,M and i = 1, . . . , N and for each j solve the associated sample approximation problem

ẑNα,j = min
{
f(x) : x ∈ XN

α,j

}
where

XN
α,j =

{
x ∈ X :

1
N

N∑
i=1

I

(
G(x, ξi,j) ≤ 0

)
≥ 1− α

}
.

We then rearrange the values {ẑNα,j}Mj=1 to obtain the order statistics ẑNα,[j] for j = 1, . . . ,M satisfying
ẑNα,[1] ≤ · · · ≤ ẑNα,[M ]. Then, a lower bound which is valid with specified confidence 1− δ can be obtained as
follows.

Theorem 4. Let δ ∈ (0, 1), α ∈ [0, 1), and N,L and M be positive integers such that L ≤M and

L−1∑
i=0

(
M

i

)
ρ(α, ε,N)i

(
1− ρ(α, ε,N)

)M−i ≤ δ. (3)

Then,
Pr
{
ẑNα,[L] ≤ z

∗
ε

}
≥ 1− δ.

Proof. We show Pr
{
ẑNα,[L] > z∗ε

}
≤ δ. Note that ẑNα,[L] > z∗ε if and only if less than L of the values ẑNα,j

satisfy ẑNα,j ≤ z∗ε . Thus, calling the event {ẑNα,j ≤ z∗ε } a success, the event ẑNα,[L] > z∗ε occurs if and only if
there are less than L successes in M trials, in which the probability of a success is η := Pr

{
ẑNα,j ≤ z∗ε

}
. The

result then follows since η ≥ ρ(α, ε,N) by Lemma 1 and so

L−1∑
i=0

(
M

i

)
ηi(1− η)M−i ≤

L−1∑
i=0

(
M

i

)
ρ(α, ε,N)i

(
1− ρ(α, ε,N)

)M−i ≤ δ
by (3).

An interesting special case of Theorem 4 is obtained by taking L = 1. In this case, we are taking as
our lower bound the minimum of the optimal values obtained from solving the M sample approximation
problems. To have confidence 1− δ that the lower bound is truly a lower bound, we should choose M such
that (

1− ρ(α, ε,N)
)M ≤ δ. (4)
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With the choice of L = 1, let us consider how large M should be with α = 0 and with α = ε. With α = 0,
we obtain ρ(0, ε, N) = (1− ε)N . Hence, to have confidence 1− δ to obtain a lower bound, we should take

M ≥ log
(

1
δ

)
/ log

(
1

1− (1− ε)N

)
. (5)

Using the inequality log(1 + x) ≤ x for x > 0 we have

log
(

1
1− (1− ε)N

)
= log

(
1 +

(1− ε)N

1− (1− ε)N

)
≤ (1− ε)N

1− (1− ε)N
.

Hence, when α = 0, we should take

M ≥ log
(

1
δ

)
1− (1− ε)N

(1− ε)N
.

Thus, for fixed ε ∈ (0, 1), the required M grows exponentially in N . For example, using (5), if δ = 0.001 and
ε = 0.01, then for N = 250 we need M ≥ 82, for N = 500 we need M ≥ 1, 048, and for N = 750 we need
M ≥ 12, 967. If δ = 0.001 and ε = 0.05, then for N = 50 we should take M ≥ 87, for N = 100 we should
take M ≥ 1, 160, and for N = 150 we must already have M ≥ 15, 157! Thus, to keep M reasonably small,
we must keep N small, but this will weaken the lower bound obtained in each sample.

Now suppose we take L = 1 and α = ε. Then, for N “large enough” (e.g. Nε ≥ 10), we have ρ(ε, ε,N) ≈
1/2. Indeed, ρ(ε, ε,N) is the probability that a binomial random variable with success probability ε and
N trials is at most bεNc. With N large enough relative to ε, this probability can be approximated by the
probability that a random variable with Normal distribution having mean εN does not exceed bεNc. Because
the median of the normal distribution equals the mean, we obtain ρ(ε, ε,N) & 1/2. Thus, with L = 1 and
α = ε, we should choose M such that (1/2)M ≤ δ, or

M ≥ log2

(
1
δ

)
.

Note that this bound is independent of N and ε. For example, for δ = 0.001, we should take M ≥ 10. The
independence of N has the advantage that we can take N to be as large as is computationally tractable,
which will tend to make each of the optimal values ẑNε,j closer to the true optimal z∗ε , and hence make the
lower bound minj{ẑNε,j} tighter.

We close this section by commenting that although our results have been stated in terms of the exact
optimal solution ẑNα of the sample approximation problem, it is not necessary to calculate this value exactly
to use the results. All the results about lower bounds for z∗ε will be valid if ẑNα is replaced with a lower
bound of ẑNα , at the expense, of course, of weakening the lower bound.

2.2 Feasible Solutions

We now consider conditions under which an optimal solution to PNα , if one exists, is feasible to Pε. The idea
is that if we take the risk parameter α in PNα to be smaller than ε, then for N large enough the feasible
region of PNα will be a subset of the feasible region of Pε, so that any optimal solution to PNα must be feasible
to Pε. Unlike the case for lower bounds, we will need to make additional assumptions to assure PNα yields a
feasible solution with high probability.

We begin by assuming that the feasible region X is finite. Note, however, that |X| may be exponentially
large, for example X could be the feasible region of a bounded integer program. We then show how this
assumption can be relaxed and replaced with some milder assumptions.

2.2.1 Finite X

Theorem 5. Suppose X is finite and α ∈ [0, ε). Then,

Pr
{
XN
α ⊆ Xε

}
≥ 1− |X \Xε| exp

{
−2N(ε− α)2

}
.
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Proof. Consider any x ∈ X \ Xε, i.e. x ∈ X with Pr
{
G(x, ξ) ≤ 0

}
< 1 − ε. We want to estimate the

probability that x ∈ XN
α . For i = 1, . . . , N define the random variable Yi by Yi = 1 if G(x, ξi) ≤ 0 and

Yi = 0 otherwise. Then, E[Yi] = Pr
{
G(x, ξi) ≤ 0

}
< 1− ε and Pr

{
Yi ∈ [0, 1]

}
= 1. Observing that x ∈ XN

α

if and only if (1/N)
∑N
i=1 Yi ≥ 1− α and applying Hoeffding’s inequality, we obtain

Pr
{
x ∈ XN

α

}
= Pr

{ 1
N

N∑
i=1

Yi ≥ 1− α
}
≤ Pr

{ N∑
i=1

(Yi − E[Yi]) ≥ N(ε− α)
}

≤ exp
{
−2N(ε− α)2

}
.

Then,

Pr
{
XN
α ⊆ Xε

}
= Pr

{
∃x ∈ XN

α s.t. Pr
{
G(x, ξ) ≤ 0

}
< 1− ε

}
≤

∑
x∈X\Xε

Pr
{
x ∈ XN

α

}
≤ |X \Xε| exp

{
−2N(ε− α)2

}
.

For fixed α < ε and δ ∈ (0, 1), Theorem 5 shows that if we take

N ≥ 1
2(ε− α)2

log
(
|X \Xε|

δ

)
then if PNα is feasible, it will yield a feasible solution to Pε with probability at least 1− δ. If |X| ≤ Un, we
can take

N ≥ 1
2(ε− α)2

log
(

1
δ

)
+

n

2(ε− α)2
log(U). (6)

Note that N grows linearly with the dimension n of the feasible region, and logarithmically with 1/δ, so
that the confidence of generating a feasible solution can be made large without requiring N to be too large.
However, the quadratic dependence on ε − α implies that this a priori estimate of how large N should be
will grow quite large for α near ε.

Theorem 5 states that for α < ε, every feasible solution to the sample approximation problem will be
feasible to the original problem with risk level ε with high probability as N gets large. This is in contrast
to the results of scenario approximation presented in [8] in which α = 0.0 is required, and the result is that
the optimal solution to the sample approximation problem will be feasible to the original problem with high
probability. The advantage of our approach is that one need not solve the sample approximation problem
to optimality to obtain a solution to the original problem. Simple heuristics which select which sampled
constraints to be satisfied, e.g. greedily or by local search, can be used to yield feasible solutions for the
approximation problem, which by virtue of Theorem 5 will have high probability of being feasible to the
original problem. This comment also applies to subsequent feasibility results which we will present which
relax the assumption that the feasible region X is finite.

In this case of finite X, we can combine Theorem 5 with Theorem 3 to demonstrate that solving a sample
approximation with α = ε will yield an exact optimal solution with probability approaching one exponentially
fast with N . Let X∗ε be the set of optimal solutions to Pε and define α = max

{
Pr
{
G(x, ξ) � 0

}
: x ∈ X∗ε

}
.

By definition, we have z∗α = z∗ε . Next, let α = min
{

Pr
{
G(x, ξ) � 0

}
: x ∈ X \Xε

}
. By definition, we have

α > ε. Finally, define κ = min{ε− α, α− ε}.

Corollary 6. Assume α < ε. Then,

Pr
{
ẑNε = z∗ε

}
≥ 1− (|X|+ 1) exp

{
−2Nκ2

}
.

Proof. First observe that κ > 0 when α < ε. Next, we apply Theorem 3 with α in place of ε and ε in
place of α to obtain Pr

{
ẑNε ≤ z∗α

}
≥ 1− exp{−2N(ε− α)2}. Because z∗α = z∗ε this implies Pr

{
ẑNε > z∗ε

}
≤

exp{−2N(ε− α)2}.
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We next observe that the proof of Theorem 5 can be modified to show the slightly stronger result that

Pr
{
XN
α ⊆ X ′ε

}
≥ 1− |X \X ′ε| exp

{
−2N(ε− α)2

}
where X ′ε = {x ∈ X : Pr

{
G(x, ξ) ≤ 0

}
> 1 − ε}. (In the proof, we consider each x ∈ X \X ′ε and observe

that the defined random variable Yi satisfies E[Yi] ≤ 1− ε. The remainder of the proof is identical with Xε

replaced by X ′ε.) Applying this result, we obtain

Pr
{
XN
ε ⊆ X ′α

}
≥ 1− |X \X ′ε| exp

{
−2N(α− ε)2

}
.

However, if x ∈ X ′α then Pr
{
G(x, ξ) � 0

}
< α and by definition of α this implies Pr

{
G(x, ξ) � 0

}
≤ ε and

thus X ′α ⊆ Xε. It follows that

Pr
{
ẑNε < z∗ε

}
≤ Pr

{
XN
ε * Xε

}
≤ |X| exp

{
−2N(α− ε)2

}
.

Therefore,

Pr
{
ẑNε 6= z∗ε

}
≤ Pr

{
ẑNε > z∗ε

}
+ Pr

{
ẑNε < z∗ε

}
≤ exp

{
−2N(ε− α)2

}
+ |X| exp

{
−2N(α− ε)2

}
≤ (1 + |X|) exp

{
−2Nκ2

}
.

The assumption that α < ε is mild since, because X is finite, there are only finitely many values of
ε ∈ [0, 1] for which it is possible to have ε = α. Stated another way, if we add a random perturbation
uniformly distributed in (−γ, γ) to ε, where γ can be arbitrarily small, then the assumption will hold
with probability one. On the other hand, the number of scenarios required to guarantee reasonably high
probability of obtaining the optimal solution will be at least proportional to (ε − α)−2, and hence may be
very large. Thus, Corollary 6 illustrates the qualitative behavior of the sample approximation with α = ε in
the finite feasible region case but may not be useful for estimating the required sample size.

If we take α = 0 in Theorem 5, we obtain improved dependence of N on ε.

Theorem 7. Suppose X is finite and α = 0. Then,

Pr
{
XN

0 ⊆ Xε

}
≥ 1− |X \Xε|(1− ε)N .

Proof. With α = 0, if x ∈ X satisfies Pr
{
G(x, ξ) ≤ 0

}
< 1 − ε, then x ∈ XN

0 if and only if G(x, ξi) ≤ 0
for each i = 1, . . . , N , and hence Pr

{
x ∈ XN

0

}
< (1 − ε)N . The claim then follows just as in the proof of

Theorem 5.

When α = 0, to obtain confidence 1 − δ that PNα will yield a feasible solution to Pε whenever PNα is
feasible, we should take

N ≥ log−1

(
1

1− ε

)
log
(
|X \Xε|

δ

)
.

If |X| ≤ Un, then it is sufficient to take

N ≥ 1
ε

log
(

1
δ

)
+
n

ε
logU (7)

where we have used the inequality log(1/(1 − ε)) ≥ ε. Hence, with α = 0, the required sample size again
grows linearly in n, but now also linearly with 1/ε. Note the similarity between the bound (7) and the bound
of Campi and Calafiore [8],

N ≥ 2
ε

log
(

1
δ

)
+ 2n+

2n
ε

log
(

2
ε

)
which also exhibits linear dependence in n and (nearly) linear dependence in 1/ε. This is interesting consid-
ering the significantly different assumptions used for the analysis. In [8] it is assumed that X is a convex set
and G(x, ξ) is a convex function of x for every possibly value of ξ. In contrast, we make the strong assumption
that X is finite, but require no other assumptions on the form of the random constraint G(x, ξ) ≤ 0.
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2.2.2 Random right-hand side

We now show how the assumption that X is finite can be relaxed when the probabilistic constraint involves
randomness only in the right-hand side. Thus, in this section we assume G(x, ξ) = ξ − g(x) where g : Rn →
Rm, and Ξ ⊆ Rm. Let the cumulative distribution function of ξ be F (y) = Pr

{
ξ ≤ y

}
for y ∈ Rm. Then,

the feasible region of the probabilistically constrained problem with random right-hand side is

X̄ε =
{
x ∈ X : F (g(x)) ≥ 1− ε

}
.

The feasible region of the sample approximation problem for α ∈ [0, 1) is

X̄N
α =

{
x ∈ X :

1
N

N∑
i=1

I

(
g(x) ≥ ξi

)
≥ 1− α

}
.

We first consider the case that ξ has a finite distribution, that is, Ξ = {ξ1, . . . , ξK}. Note that K may be very
large, for example K = Um for a positive integer U . Next, for j = 1, . . . ,m define Ξj = {ξkj : k = 1, . . . ,K}
and finally let C =

∏m
j=1 Ξj .

Theorem 8. Suppose ξ has a finite distribution and let α ∈ [0, ε). Then,

Pr
{
X̄N
α ⊆ X̄ε

}
≥ 1− |C| exp

{
−2N(ε− α)2

}
.

Proof. Let Cε = {y ∈ C : F (y) ≥ 1− ε} and

CNα =
{
y ∈ C :

1
N

N∑
i=1

I

(
y ≥ ξi

)
≥ 1− α

}
.

Because C is a finite set, we can apply Theorem 5 to obtain

Pr
{
CNα ⊆ Cε

}
≥ 1− |C| exp

{
−2N(ε− α)2

}
. (8)

Now, let x ∈ X̄N
α , so that x ∈ X and

∑N
i=1 I

(
g(x) ≥ ξi

)
≥ N(1− α). Define ȳ ∈ C by

ȳj = max{yj ∈ Ξj : yj ≤ gj(x)} j = 1, . . . ,m

so that by definition, ȳ ≤ g(x). Next, note that if g(x) ≥ ξi for some i, then also ȳ ≥ ξi since ξi ∈ C. Hence,∑N
i=1 I

(
ȳ ≥ ξi

)
≥ N(1−α) and so ȳ ∈ CNα . Hence, when CNα ⊆ Cε, F (ȳ) ≥ 1− ε and because ȳ ≤ g(x), also

F (g(x)) ≥ 1− ε and so x ∈ X̄ε. Since x ∈ X̄N
α was arbitrary, this shows that when CNα ⊆ Cε, X̄N

α ⊆ X̄ε and
the result follows from (8).

If, for example, |Ξj | ≤ U for each j, then |C| ≤ Um so to obtain confidence 1 − δ that X̄N
α ⊆ X̄ε it is

sufficient to take

N ≥ 1
2(ε− α)2

log
(

1
δ

)
+

m

2(ε− α)2
logU. (9)

The difference between this bound and (6) is that (9) depends linearly on m, the dimension of ξ, whereas
(6) depends linearly on n, the dimension of x.

Similar to the case of finite feeasible region X, when ξ has a finite distribution, it can be shown that the
sample approximation problem with ε = α will yield an exact optimal solution with probability approaching
one as N increases. The statement and proof of this result is completely analogous to that of Corollary 6
and is omitted for the sake of brevity.

As in the case of Theorem 7, if we take α = 0, we can obtain the stronger convergence result

Pr
{
X̄N

0 ⊆ X̄ε

}
≥ 1− |C|(1− ε)N .

The assumption in Theorem 8 that Ξ is finite can be relaxed if we assume X̄ε ⊆ X̄(l, u) := {x ∈ X : l ≤
g(x) ≤ u} for some l, u ∈ Rm. This assumption is not very strict. Indeed, if we define l ∈ Rm by

lj = min{l ∈ R : Fj(l) ≥ 1− ε}

10



where Fj is the marginal distribution of ξj for j = 1, . . . ,m then g(x) ≥ l for any x ∈ X̄ε. This holds because
if gj(x) < lj for some j, then Pr

{
g(x) ≥ ξ

}
≤ Pr

{
gj(x) ≥ ξj

}
= Fj(gj(x)) < 1 − ε by definition of lj and

hence x /∈ X̄ε. Furthermore, if X is compact and g(x) is continuous in x, then if we define u ∈ Rm by

uj = max{gj(x) : x ∈ X} j = 1, . . . ,m

then each uj is finite, and by definition, g(x) ≤ u for any x ∈ X̄. Under the assumption that X̄ε ⊆ X̄(l, u)
the assumption that Ξ is finite can be replaced by the assumption that Ξ ∩ {y ∈ Rm : l ≤ y ≤ u} is finite,
leading to a result similar to Theorem 8, with a nearly identical proof.

Alternatively, when X̄ε ⊆ X̄(l, u), we can obtain a similar result if ξ has a Lipschitz continuous cumulative
distribution function F on [l, u] = {y ∈ Rm : l ≤ y ≤ u}. That is, we assume there exists L > 0 such that

|F (y)− F (y′)| ≤ L‖y − y′‖∞ ∀y, y′ ∈ [l, u]

where ‖y‖∞ = max{|yj | : j = 1, . . . ,m}. Under the assumption that X̄ε ⊆ X̄(l, u) we add the constraints
l ≤ g(x) ≤ u to the sample approximation problem to obtain

X̄N
α (l, u) =

{
x ∈ X̄(l, u) :

1
N

N∑
i=1

I

(
g(x) ≥ ξi

)
≥ 1− α

}
.

We define D = max{uj − lj : j = 1, . . . ,m}. Then we have

Theorem 9. Suppose X̄ε ⊆ X̄(l, u) and F is Lipschitz continuous with constant L. Let α ∈ [0, ε) and
β ∈ (0, ε− α). Then,

Pr
{
X̄N
α (l, u) ⊆ X̄ε

}
≥ 1− dDL/βem exp

{
−2N(ε− α− β)2

}
.

Proof. Let K = dDL/βe and define Yj = {lj + (uj − lj)i/K : i = 1, . . . ,K} for j = 1, . . . ,m and

Y =
m∏
j=1

Yj ,

so that |Y | = Km and that for any y ∈ [l, u] there exists y′ ∈ Y such that y′ ≥ y and ‖y − y′‖∞ ≤ β/L.
Indeed, for a given y ∈ [l, u] such a y′ can be obtained by letting

y′j = min{w ∈ Yj : w ≥ yj} j = 1, . . . ,m.

With this definition of y′, we have y′ ≥ y and

|y′j − yj | = y′j − yj ≤ (uj − lj)/K ≤ D/K ≤ β/L j = 1, . . . ,m.

Next, let Yε−β = {y ∈ Y : F (y) ≥ 1− ε+ β} and

Y Nα =
{
y ∈ Y :

1
N

N∑
i=1

I

(
y ≥ ξi

)
≥ 1− α

}
. (10)

Since Y is finite and α < ε− β, we can apply Theorem 5 to obtain

Pr
{
Y Nα ⊆ Yε−β

}
≥ 1− |Y | exp

{
−2N(ε− α− β)2

}
.

Now, let x ∈ X̄N
α (l, u) and let y′ ∈ Y be such that y′ ≥ g(x) and ‖y′ − g(x)‖∞ ≤ β/L. By Lipschitz

continuity of F , this implies
F (y′)− F (g(x)) ≤ L‖y′ − g(x)‖∞ ≤ β. (11)

Because x satisfies
∑N
i=1 I

(
g(x) ≥ ξi

)
≥ N(1− α) and y′ ≥ g(x), we have

∑N
i=1 I

(
y′ ≥ ξi

)
≥ N(1− α) and

hence y′ ∈ Y Nα . Thus, using (11), when Y Nα ⊆ Yε−β occurs,

F (g(x)) ≥ F (y′)− β ≥ (1− ε+ β)− β = 1− ε.

Since x ∈ X̄N
α (l, u) was arbitrary, Y Nα ⊆ Yε−β implies X̄N

α (l, u) ⊆ X̄ε and the result follows from (10).
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To obtain confidence at least 1− δ that X̄N
α (l, u) ⊆ X̄ε it is sufficient to take

N ≥ 1
2(ε− α− β)2

log
(

1
δ

)
+

m

2(ε− α− β)2
log
⌈DL
β

⌉
.

Note that for fixed ε > 0 and α ∈ [0, ε), β is a free parameter which can be chosen in (0, ε − α). If, for
example, we take β = (ε− α)/2 we obtain

N ≥ 2
(ε− α)2

log
(

1
δ

)
+

2m
(ε− α)2

log
⌈ 2DL
ε− α

⌉
.

Once again, if α = 0, similar arguments can be used to conclude that if

N ≥ 2
ε

log
(

1
δ

)
+

2m
ε

log
⌈2DL

ε

⌉
then Pr

{
X̄N

0 (l, u) ⊆ X̄ε

}
≥ 1− δ.

2.2.3 Lipschitz continuous G

We now turn to the problem of using a sample approximation problem to generate feasible solutions to Pε
when X is not necessarily finite, and G(x, ξ) does not necessarily have the form G(x, ξ) = g(x)− ξ. In this
section, we assume for simplicity of exposition that G takes values in R. This is without loss of generality,
since if Ḡ : Rn ×Rd → Rm we can define G : Rn ×Rd → R by G(x, ξ) = max{Ḡj(x, ξ) : j = 1, . . . ,m}
and the constraints G(x, ξ) ≤ 0 and Ḡ(x, ξ) ≤ 0 are equivalent. In this section, we shall make the following
Lipschitz continuity assumption on G.

Assumption 1. There exists L > 0 such that

|G(x, ξ)−G(x′, ξ)| ≤ L‖x− x′‖∞ ∀x, x′ ∈ X and ∀ξ ∈ Ξ.

It is important that the Lipschitz constant L is independent of ξ ∈ Ξ, and this condition may make
Assumption 1 appear rather stringent. There are, however, interesting cases in which the assumption does
hold. For example, if Ξ is finite (with possibly huge cardinality) and G(x, ξ) is Lipschitz continuous with
Lipschitz constant L(ξ) for each ξ ∈ Ξ, then Assumption 1 holds with L = max{L(ξ) : ξ ∈ Ξ}. Alternatively,
if Ξ is compact and G(x, ξ) = max{Tj(ξ)x : j = 1, . . . ,m} and Tj : Ξ → Rn is continuous in ξ for each j,
then Assumption 1 holds with

L = sup
ξ∈Ξ

{
max{‖Tj(ξ)‖∞ : j = 1, . . . ,m}

}
.

To generate feasible solutions for this general case, we will also need to modify the sample approximation
problem somewhat. In addition to taking a risk level α less than the nominal risk level ε, we will require
that at least (1−α)N of the constraints be satisfied strictly. That is, for a fixed γ > 0, we define the sample
approximation feasible region to be

XN
α,γ =

{
x ∈ X :

1
N

N∑
i=1

I

(
G(x, ξ) + γ ≤ 0

)
≥ 1− α

}
.

Finally, we will assume that X is bounded, and let D = sup{‖x− x′‖∞ : x, x′ ∈ X} be the diameter of X.

Theorem 10. Suppose X is bounded with diameter D and Assumption 1 holds. Let α ∈ [0, ε), β ∈ (0, ε−α)
and γ > 0. Then,

Pr
{
XN
α,γ ⊆ Xε

}
≥ 1− d1/βed2LD/γen exp

{
−2N(ε− α− β)2

}
.
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Proof. For x ∈ X, let φ(x) = Pr
{
G(x, ξ) ≤ 0

}
. Let J = d1/βe and for j = 1, . . . , J − 1, define

Xj =
{
x ∈ X :

j − 1
J
≤ φ(x) <

j

J

}
and let XJ = {x ∈ X : (J−1)/J ≤ φ(x) ≤ 1}. Next, we claim that for each j there exists a finite set Zγj ⊆ Xj

such that |Zγj | ≤ d2LD/γen and for all x ∈ Xj there exists z ∈ Zγj such that ‖x − z‖∞ ≤ γ/L. Indeed,
because Xj ⊆ X and X is bounded with diameter D, there exists a finite set Y ⊆ Rn with |Y | ≤ d2LD/γen
such that for all x ∈ X there exists y ∈ Y such that ‖x − y‖∞ ≤ γ/2L. For any y ∈ Rn and η > 0, define
B(y, η) = {x ∈ RN : ‖y − x‖∞ ≤ η}. Now, let Y ′j = {y ∈ Y : Xj ∩ B(y, γ/2L) 6= ∅}, and for y ∈ Y ′j select
an arbitrary xy ∈ Xj ∩B(y, γ/2L). Then, let

Zγj =
⋃
y∈Y ′j

xy.

By definition, Zγj ⊆ Xj and |Zγj | ≤ d2LD/γen. In addition, for any x ∈ Xj , there exists y such that
x ∈ B(y, γ/2L) and because for this y, Xj∩B(y, γ/2L) 6= ∅ there exists xy ∈ Zγj such that ‖xy−y‖∞ ≤ γ/2L.
Hence,

‖xy − x‖∞ ≤ ‖xy − y‖∞ + ‖y − x‖∞ ≤ γ/L.

Now, define

Zγ =
J⋃
j=1

Zγj

and observe that |Zγ | ≤ Jd2LD/γen. Next, define Zγε−β =
{
x ∈ Zγ : Pr

{
G(x, ξ) ≤ 0

}
≥ 1− ε+ β

}
and

Zγ,Nα =
{
x ∈ Zγ :

1
N

N∑
i=1

I

(
G(x, ξi) ≤ 0

)}
.

Since Zγ is finite and α < ε− β we can apply Theorem 5 to obtain

Pr
{
Zγ,Nα ⊆ Zγε−β

}
≥ 1− d1/βed2LD/γen exp

{
−2N(ε− α− β)2

}
. (12)

Now consider an arbitrary x ∈ XN
α,γ . Let j ∈ {1, . . . , J} be such that x ∈ Xj . By definition of Zγj

there exists z ∈ Zγj such that ‖x − z‖∞ ≤ γ/L. By definition of Xj and because Zγj ⊆ Xj , we have
|φ(x) − φ(z)| ≤ β. In addition, Assumption 1 implies |G(x, ξi) − G(z, ξi)| ≤ γ. Hence, if G(x, ξi) + γ ≤ 0
then G(z, ξi) ≤ 0 and, because x satisfies

∑N
i=1 I

(
G(x, ξi) + γ ≤ 0

)
≥ N(1 − α), it follows that z satisfies∑N

i=1 I
(
G(z, ξi) ≤ 0

)
≥ N(1 − α). Thus z ∈ Zγ,Nα and so if Zγ,Nα ⊆ Zγε−β then φ(z) ≥ 1 − ε + β. Thus,

φ(x) ≥ φ(z)− β ≥ 1− ε when Zγ,Nα ⊆ Zγε−β . Since x ∈ XN
α,γ was arbitrary, Zγ,Nα ⊆ Zγε−β implies XN

α,γ ⊆ Xε

and the result follows from (12).

Once again, for fixed ε and α < ε, β is a free parameter to be chosen in (0, ε − α). If we choose, for
example β = (ε− α)/2, then we can assure XN

α,γ ⊆ Xε with confidence at least 1− δ by taking

N ≥ 2
(ε− α)2

[
log
(

1
δ

)
+ n log

⌈2LD
γ

⌉
+ log

⌈ 2
ε− α

⌉]
.

Additionally, if α = 0, similar arguments show that XN
0,γ ⊆ Xε occurs with probability at least 1− δ if

N ≥ 2
ε

[
log
(

1
δ

)
+ n log

⌈2LD
γ

⌉
+ log

⌈2
ε

⌉]
.

Regardless of whether α = 0 or α > 0 the term 1/γ is taken under log, and hence γ can be made very small
without significantly increasing the required sample size, suggesting that modifying the sample approximation
problem to require at least (1−α)N of the sampled constraints to be satisfied with slack at least γ need not
significantly alter the feasible region.

13



2.2.4 A Posteriori Feasibility Checking

The results of Sections 2.2.1 - 2.2.3 demonstrate that with appropriately constructed sample approximation
problems, the probability that the resulting feasible region will be a subset of the true feasible region Xε

approaches one exponentially fast. This gives strong theoretical support for using these sample approxi-
mations to yield solutions feasible to Xε. These results yield a priori estimates on how large the sample
size N should be to have high confidence the sample approximation feasible region will be a subset of Xε.
However, these a priori estimates are likely to yield required sample sizes which are very large, and hence the
sample approximation problems will still be impractical to solve. This is particularly true if α > 0 and ε−α
is small. However, typically in sampling approximation results such as these, the a priori estimates of the
required sample size are very conservative, and in fact much smaller sample sizes are sufficient. See [17] for
a computational demonstration of this phenomenon for the case of Sample Average Approximation applied
to two-stage stochastic linear programs. Thus, a natural alternative to using the sample size suggested by
the a priori estimates is to solve a sample approximation problem with a smaller sample to yield a candidate
solution x̂ ∈ X, and then conduct an a posteriori check to see whether Pr

{
G(x̂, ξ) ≤ 0

}
≥ 1− ε. A simple

method for conducting an a posteriori analysis of the risk of a candidate solution is to take a single very
large Monte Carlo sample ξ1, . . . , ξN

′
and count how many times G(x̂, ξi) ≤ 0 holds. Bounds on the true

risk Pr
{
G(x̂, ξ) ≤ 0

}
which hold with high confidence can then be constructed, and if N ′ is very large, these

bounds should be tight. This approach will not work well if the allowed risk ε is extremely small, but on
the other hand, we do not expect the sample approximation approach to be practical in this case anyway.
Of course, if good estimates of Pr

{
G(x̂, ξ) ≤ 0

}
can be obtained efficiently by some other method, then this

other method should be used for a posteriori feasibility checking. For example, if G(x, ξ) = ξ− g(x) and the
components of ξ are independent, then Pr

{
g(x) ≥ ξ

}
can be calculated as

∏
i Pr
{
gi(x) ≥ ξi

}
.

3 Numerical Experiments

We conducted experiments to test the effectiveness of the sample approximation approach for yielding good
feasible solutions and lower bounds. In particular, our aim is to determine whether using α > 0 in the sample
approximation can yield better solutions than when using α = 0 as in the scenario approximation approach
of [7, 21]. In addition, we test whether reasonable lower bounds which are valid with high probability can
be obtained. We first conducted tests on a probabilistic version of the classical set covering problem, which
has been studied recently in [5, 25, 26]. This problem has both finite feasible region and finite distribution
(although both are exponentially large) so that for generating feasible solutions, the stronger Theorems 5
and 8 apply. These results are given in Section 3.1. We also conducted tests on a probabilistic version of the
transportation problem. For this problem, the feasible region is continuous and we also use a joint normal
distribution for the right-hand side vector, so that Theorem 9 applies. These results are presented in Section
3.2.

Note that although Theorem 3 provides support for using the sample approximation scheme to generate
lower bounds, we will use Theorem 4 to actually obtain lower bounds which are valid with high confidence,
because it can be used regardless of how large the sample size N is (with the possible drawback that using
smaller N will yield weaker lower bounds). Similarly, Theorems 5, 8, and 9 support the use of sample
approximation to yield feasible solutions, but we do not use these Theorems to guide our choice of α and
N . Indeed, the bounds implied by these theorems would suggest using N which is far too large to be able
to solve the approximation problem. Instead, we experiment with different values of α and N , and perform
an a posteriori test on each solution generated to determine whether it is feasible (with high confidence).

3.1 Probabilistic Set Cover Problem

The Probabilistic Set Cover Problem is given by

min
{
cx : Pr

{
Ax ≥ ξ

}
≥ 1− ε, x ∈ {0, 1}n

}
(PSC)

where c ∈ Rn is the cost vector, A is an m × n zero-one matrix and ξ is a random vector taking values in
{0, 1}m. We conducted tests on a single instance of PSC, with two values of ε, 0.05 and 0.1.
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Test Instance

Following [5], we based our tests on a deterministic set covering instance, scp41, of the OR library [3],
which has m = 200 rows and n = 1000 columns. Also following [5], the random vector ξ is assumed
to consist of 20 independent sub-vectors, with each sub-vector having size k = 10 following the circular
distribution. The circular distribution is defined by parameters λj ∈ [0, 1] for j = 1, . . . , k. First, Bernoulli
random variables Yj for j = 1, . . . , k are generated independently with Pr

{
Yj = 1

}
= λi. Then, the random

sub-vector is defined by ξj = max{Yj , Yj+1} for j < k and by ξk = max{Y1, Yk}. Because of the simple
form of this distribution, given a solution x, it is possible to calculate exactly Pr

{
Ax ≥ ξ

}
. Thus, when

a solution is obtained from a sample approximation problem, we test a posteriori whether it is feasible
at a given risk level by exactly calculating Pr

{
Ax ≥ ξ

}
. To illustrate this calculation, we show how to

calculate the probability for a single sub-vector, that is Pr
{
ξj ≤ yj , j = 1, . . . , k

}
. Then, with y = Ax, the

overall probability Pr
{
Ax ≥ ξ

}
is calculated as the product of the probabilities for each sub-vector. Let

J = {1 ≤ j ≤ k : yj = 0}. Then,

Pr
{
ξj ≤ yj , j = 1, . . . , k

}
= Pr

{
ξj = 0,∀j ∈ J

}
= Pr

{
Yj = 0,∀j ∈ J+

}
=
∏
j∈J+

(1− λj)

where J+ = ∪j∈J{j, (j + 1) mod k}. Although in this test, calculation of the distribution function is easy,
we stress that this is not a necessary condition to use the sample approximation, it is only necessary that
sampling from the distribution can be done efficiently.

Solving the Sample Approximation

To solve the sample approximation problem of the PSC, we used a MIP formulation which is equivalent
to an extended formulation studied in [19] (see also [18]). The formulation is not exactly the same, since
because the random right-hand side can take on only two values, it can be simplified somewhat. Let the
scenarios obtained in the sample of size N be denoted by ξi for i = 1, . . . , N , where each ξi ∈ {0, 1}m. Then,
the formulation we use is

min cx

s.t. Ax ≥ y
yj + zi ≥ 1 ∀i, j s.t. ξij = 1 (13)
N∑
i=1

zi ≤ p (14)

x ∈ {0, 1}n, z ∈ {0, 1}N , y ∈ {0, 1}m

where p = bαNc. We could relax the intregrality restriction on the y variables, but we found that leaving this
restriction and also placing higher branching priority on these variables significantly improved performance
when solving with CPLEX 9.0. The intuition behind this is that if we fix yj = 1, then we are enforcing the
constraint Ajx ≥ 1, and on the other hand, if we fix yj = 0, then any scenario i for which ξij = 1 will be fixed
to 1, and constraint (14) will quickly become binding. We also found that some simple preprocessing of the
formulation significantly helped solution times. If, for a row j,

∑
i ξ
i
j > p, then we cannot have yj = 0, and

so we fixed yj = 1, and the corresponding inequalities (13) for j were not included. After this preprocessing,
for each j there will be at most p inequalities in (13), so that these inequalities add at most mp rows and
O(mp) nonzeros to the formulation. Using this formulation, we found the sample approximation problems
could be solved quickly, in all cases in less than ten seconds, and usually much less. However, this may be
due to the particular distribution used (and the simplicity of the underlying set cover instance), and thus this
should not be taken as a study of the effectiveness of this formulation in general. Rather, we are interested
here only in the properties of the solutions generated by the sample approximation problems.

Feasible Solutions

We first tested the effectiveness of the sample approximation approach for generating feasible solutions.
To do so, we varied the risk level of the approximation problem, α, and sample size, N . For each combination
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of α and N we generated and solved 10 sample approximation problems. Table 1 gives statistics of the
solutions generated for the PSC instance with ε = 0.05, and Table 2 gives the same for the PSC instance
with ε = 0.1. For each combination of α and N , we report statistics on the risk of the generated solutions,

Table 1: Solution results for PSC sample problems with ε = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ
0.00 100 0.107 0.048 0.185 0.042 1 425.0 425 425 ***

110 0.071 0.013 0.100 0.029 3 425.7 424 429 2.9
120 0.069 0.013 0.152 0.049 4 424.8 424 427 1.5
130 0.062 0.020 0.124 0.036 5 424.8 420 429 4.3
140 0.042 0.018 0.080 0.017 8 425.6 421 429 2.8
150 0.041 0.005 0.080 0.026 6 427.3 421 429 3.1

0.05 1000 0.056 0.041 0.072 0.009 2 414.0 414 414 0.0
3000 0.044 0.041 0.055 0.005 8 414.0 414 414 0.0
5000 0.044 0.041 0.060 0.006 8 414.0 414 414 0.0
7500 0.041 0.041 0.041 0.000 10 414.0 414 414 0.0

10000 0.044 0.041 0.054 0.005 8 414.0 414 414 0.0

where for a solution x, the risk is Pr
{
Ax � ξ

}
, as well as on the costs of the feasible solutions generated,

i.e. those solutions which have risk less than 0.05 and 0.1 respectively. For the risk of the solutions, we report
the average, minimum, maximum and sample standard deviation over the 10 solutions. For the solutions
costs, we report first how many solutions were feasible, then report the average, minimum, maximum and
sample standard deviation of the cost taken over these solutions.

Table 2: Solution results for PSC sample problems with ε = 0.1.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ

0.0 80 0.203 0.095 0.311 0.076 1 420.0 420 420 ***
90 0.169 0.084 0.239 0.051 1 428.0 428 428 ***

100 0.107 0.048 0.185 0.042 4 426.0 423 428 500.7
110 0.071 0.013 0.100 0.029 9 425.4 421 429 499.8
120 0.069 0.013 0.152 0.049 7 424.6 419 428 534.3
130 0.062 0.020 0.124 0.036 7 425.3 420 429 488.8

0.1 1000 0.111 0.095 0.141 0.015 4 401.3 400 403 1.5
3000 0.101 0.092 0.115 0.006 6 401.0 400 402 1.1
5000 0.101 0.092 0.108 0.005 5 401.2 400 402 1.1
7500 0.099 0.092 0.105 0.004 7 401.1 400 402 1.1

10000 0.097 0.088 0.103 0.004 8 401.8 400 404 1.3

We first discuss results for the case of nominal risk level ε = 0.05. When using α = 0, the best results were
obtained with N in the range of 100-150, and these are the results we report. With α = 0, as N increases
more constraints are being enforced, which leads to smaller feasible region of the approximation and higher
likelihood that the optimal solution of the approximation is feasible at the nominal risk level. However,
the smaller feasible region also causes the cost to increase, so that increasing N more would yield overly
conservative solutions. We also conducted tests with α = 0.05, and for this value of α we used significantly
larger sample sizes. The best feasible solution found using α = 0 had cost 420, and the average cost of the
feasible solutions found was significantly greater than this. When α = 0.05, every sample size N yielded at
least one feasible solution in the ten runs, and every feasible solution found had cost 414.
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For ε = 0.1, we observed similar results. In this case, when using α = 0, the best results were obtained
with N in the range of 80-130. The best solution found using α = 0 had cost 419, whereas the best solution
found using α > 0 was 400, which was obtained by one of the ten runs for every sample size N .

In terms of the variability of the risks and costs of the solutions generated, using α > 0 and a much
larger sample size yielded solutions with much lower variability than when using α = 0 and small sample
size. This is not surprising since using a larger sample size naturally should reduce variability. On the other
hand, constraining the sample approximation to have α = 0 prohibits the use of a larger sample size, as the
solutions produced then become overly conservative.

Lower Bounds

We next discuss the results for obtaining lower bounds for the PSC. We used the procedure of Theorem
4 with α = ε and M = 10. We use the same 10 sample approximation problems as when generating feasible
solutions. As argued after Theorem 4, with α = ε, we have ρ(α, ε,N) = ρ(ε, ε,N) & 1/2. Then, if we take
L = 1 the test of Theorem 4 yields a lower bound with confidence 0.999. Taking L = 1 corresponds to
taking the minimum optimal value over all the M = 10 runs (not just over the ones which yielded feasible
solutions). More generally, we can take L ∈ {1, . . . , 10} yielding a lower bound with confidence at least

1−
L−1∑
i=0

(
10
i

)
ρ(ε, ε,N)i

(
1− ρ(ε, ε,N)

)10−i
& 1−

L−1∑
i=0

(
10
i

)
(1/2)10

to obtain possibly “tighter” lower bounds of which we are less confident.

Table 3: Lower bounds for PSC sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
3000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
5000 412 414 414 414 0.5% 0.0% 0.0% 0.0%
7500 414 414 414 414 0.0% 0.0% 0.0% 0.0%

10000 413 414 414 414 0.2% 0.0% 0.0% 0.0%

The results obtained using varying values of N and ε = α = 0.05 are given in Table 3. The gaps reported
are the percent by which the lower bound is below the best feasible solution (414, obtained with α = 0.05
and any if the tested sample sizes N). Thus, for example, by solving 10 problems with sample size N = 1000
we obtained a feasible solution of cost 414, and lower bound of 412, which is valid with probability at least
0.999. In addition, we obtain a lower bound of 414 which is valid with probability at least 0.989. Thus, we
have confidence at least 0.989 that 414 is the optimal value. Similar results were obtained with larger sample
sizes.

Table 4 yields the lower bound results obtained with ε = α = 0.1 and varying sample size N . Solving
10 sample problems with N = 1000 we obtained a feasible solution of cost 400, and can say with confidence
0.999 that the optimal solution is at most 0.8% less costly than this solution. Using N = 5000 (or greater),
we obtain a feasible solution of the same cost, but a lower bound which states that with confidence at least
0.999 this feasible solution is optimal.

3.2 Probabilistic Transportation Problem

We next tested the sampling approach on a probabilistic version of the classical transportation problem,
which we call the Probabilistic Transportation Problem (PTP). In this problem, we have a set of suppliers
I and a set of customers D with |D| = m. The suppliers have limited capacity Mi for i ∈ I. There is a
transportation cost cij for shipping a unit of product from supplier i ∈ I to customer j ∈ D. The customer
demands are random and are represented by a random vector d̃ taking values in Rm. We assume we
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Table 4: Lower bounds for PSC sample problems with α = ε = 0.1.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 397 397 398 398 0.8% 0.8% 0.5% 0.5%
3000 399 400 400 400 0.3% 0.0% 0.0% 0.0%
5000 400 400 400 400 0.0% 0.0% 0.0% 0.0%
7500 400 400 400 400 0.0% 0.0% 0.0% 0.0%

10000 400 400 400 400 0.0% 0.0% 0.0% 0.0%

must choose the shipment quantities before the customer demands are known. We enforce the probabilistic
constraint

Pr
{∑
i∈I

xij ≥ d̃j , j = 1, . . . ,m
}
≥ 1− ε (15)

where xij ≥ 0 is the amount shipped from supplier i ∈ I to customer j ∈ D. The objective is to minimize
distribution costs subject to (15), and the supply capacity constraints∑

j∈D
xij ≤Mi, ∀i ∈ I.

Test Instances

We conducted our tests on an instance with 40 suppliers and 50 customers. The supply capacities and
cost coefficients were randomly generated using normal and uniform distributions respectively. The demand
is assumed to have a joint normal distribution. The mean vector and covariance matrix were randomly
generated. We considered two cases for the covariance matrix: a low variance and a high variance case. In
the low variance case, the standard deviation of the one dimensional marginal random demands is 10% of the
mean on average. In the high variance case, the covariance matrix of the low variance case is multiplied by
25, yielding standard deviations of the one dimensional marginal random demands being 50% of the mean
on average. In both cases, we consider a single risk level ε = 0.05.

We remark that for this particular choice of distribution, the feasible region defined by the probabilistic
constraint is convex [23]. However, the dimension of the random vector d̃ is m = 50, and so evaluating
Pr
{
y ≥ d̃

}
for a single vector y ∈ Rm is difficult. Hence, applying variations of standard convex programming

techniques will not likely be efficient. However, generating random samples from the joint normal distribution
is easy so that generating (non-convex) sample approximation problems can be accomplished.

Once a sample approximation is solved yielding solution x̂, we use a single very large sample (N ′ =
250, 000), to estimate Pr

{
ŷ ≥ d̃

}
where ŷ ∈ Rm is the vector given by ŷj =

∑
i∈I x̂ij for j ∈ D. Letting

d1, . . . , dN
′

be the realizations of this large sample, we calculate
∑N ′

i=1 I
(
ŷ ≥ di

)
and use the normal approx-

imation to the binomial distribution to construct an upper bound α̂ on the true solution risk Pr
{
ŷ ≥ d̃

}
,

which is valid with confidence 0.999. Henceforth for this experiment, if we say a solution is feasible at risk
level ε, we mean α̂ ≤ ε, and so it is feasible at this risk level with confidence 0.999. We used such a large
sample to get a good estimate of the true risk of the solutions generated, but we note that because this
sample was so large, generating this sample and calculating

∑N ′

i=1 I
(
ŷ ≥ di

)
often took longer than solving

the sample approximation itself.

Solving the Sample Approximation

We solved the sample approximation problem using a mixed-integer programming formulation, augmented
with a class of strong valid inequalities. We refer the reader to [19, 18] for details of this formulation
and the valid inequalities, as well as detailed computational results for solving the sample approximation
problems. However, we mention that in contrast to the probabilistic set cover problem, solving the sample
approximation problem with the largest sample size we consider (N = 10000) and largest α (0.05) takes a
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nontrivial amount of time, in some cases as long as 30 minutes. On the other hand, for N = 5000, the worst
case was again α = 0.05 and usually took less than 4 minutes to solve.

Low Variance Instance

Table 5: Solution results for low variance PTP sample problems with ε = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ
0.000 900 0.048 0.036 0.066 0.011 7 2.0266 2.0199 2.0320 0.0045

950 0.047 0.039 0.055 0.005 6 2.0244 2.0185 2.0291 0.0041
1000 0.045 0.040 0.051 0.004 8 2.0253 2.0185 2.0300 0.0039
1500 0.033 0.025 0.043 0.005 10 2.0336 2.0245 2.0406 0.0053

0.030 5000 0.049 0.045 0.050 0.002 6 2.0098 2.0075 2.0114 0.0013
7500 0.045 0.041 0.047 0.002 10 2.0112 2.0094 2.0136 0.0015

10000 0.042 0.041 0.044 0.001 10 2.0129 2.0112 2.0145 0.0010
0.033 5000 0.052 0.049 0.054 0.002 2 2.0080 2.0073 2.0088 0.0011

7500 0.048 0.045 0.051 0.002 7 2.0092 2.0075 2.0107 0.0012
10000 0.045 0.044 0.047 0.001 10 2.0103 2.0089 2.0118 0.0009

0.036 5000 0.055 0.053 0.057 0.002 0 *** *** *** ***
7500 0.052 0.049 0.054 0.002 2 2.0079 2.0077 2.0080 0.0002

10000 0.049 0.047 0.051 0.001 8 2.0080 2.0066 2.0093 0.0008

We begin by presenting results for the instance in which the distribution of demand has relatively low
variance. For generating feasible solutions, we tested α = 0 with various sample size N and report the results
for the sample sizes which yielded the best results. Once again, this means we use a relatively small sample
size for the case α = 0, as compared to the cases with α > 0. We tested several values of α > 0 and varying
sample size. In contrast to the PSC case, we found that taking α = ε or even α close to ε did not yield
feasible solutions, even with a large sample size. Thus, we report results for several different values of α in
the range 0.03 to 0.036. The reason we report results for this many different values of α is to illustrate that
within this range, the results are not extremely sensitive to the choice of α (results for more values of α can
be found in [18]).

Table 6: Lower bounds for low variance PTP sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 1.9755 1.9757 1.9775 1.9782 1.55% 1.54% 1.45% 1.42%
3000 1.9879 1.9892 1.9892 1.9910 0.93% 0.87% 0.87% 0.78%
5000 1.9940 1.9943 1.9948 1.9951 0.63% 0.62% 0.59% 0.57%
7500 1.9954 1.9956 1.9959 1.9963 0.56% 0.55% 0.54% 0.52%

10000 1.9974 1.9977 1.9980 1.9981 0.46% 0.45% 0.43% 0.42%

Table 5 gives the characteristics of the solutions generated for the different values of α and N . We observe
that as in the case of the PSC, the average cost of the feasible solutions obtained using α > 0 is always
less than the minimum cost of the feasible solutions obtained with α = 0. However, for this instance, the
minimum cost solution obtained using α = 0 is not so significantly worse than the minimum cost solutions
using different values of α > 0, being between 0.40% and 0.58% more costly. As in the case of the PSC,
using α > 0 and large N significantly reduced the variability of the risk and cost of the solutions generated.

We next investigated the quality of the lower bounds that can be obtained for PTP by solving sample
approximation problems. As in the case of the PSC, we obtained lower bounds by generating and solving
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10 sample approximation problems with α = ε = 0.05. By taking the lowest value of all the optimal values
we obtain a lower bound valid with confidence 0.999, taking the second smallest yields a lower bound which
is valid with confidence 0.989, etc. The results for different values of N are given in Table 6. For reference,
the percentage gap between these lower bounds and the best feasible solution found (with cost 2.0066) is
also given. Using N ≥ 3000 we obtain lower bounds that are valid with confidence 0.999 and are within
one percent of the best feasible solution, indicating that for this low variance instance, the lower bounding
scheme yields good evidence that the solutions we have found are good quality.

High Variance Instance

Table 7: Solution results for high variance PTP sample problems with ε = 0.05.

Solution Risk Feasible Solutions Cost
α N Ave Min Max σ # Ave Min Max σ
0.000 900 0.050 0.035 0.066 0.010 4 3.5068 3.4672 3.5488 0.0334

950 0.050 0.041 0.058 0.006 6 3.4688 3.4403 3.4917 0.0191
1000 0.045 0.041 0.052 0.004 9 3.4895 3.4569 3.5167 0.0234
1500 0.030 0.022 0.035 0.005 10 3.5494 3.5205 3.6341 0.0368

0.030 5000 0.050 0.045 0.053 0.002 4 3.4014 3.3897 3.4144 0.0101
7500 0.046 0.043 0.050 0.002 9 3.4060 3.3920 3.4235 0.0098

10000 0.043 0.041 0.046 0.001 10 3.4139 3.4001 3.4181 0.0055
0.033 5000 0.053 0.046 0.057 0.003 1 3.4107 3.4107 3.4107 ***

7500 0.049 0.046 0.054 0.002 7 3.3928 3.3865 3.4020 0.0062
10000 0.046 0.042 0.049 0.002 10 3.3982 3.3885 3.4139 0.0086

0.036 5000 0.057 0.049 0.060 0.003 1 3.3979 3.3979 3.3979 ***
7500 0.053 0.050 0.057 0.002 0 *** *** *** ***

10000 0.050 0.046 0.053 0.002 4 3.3927 3.3859 3.3986 0.0054

Table 7 gives the characteristics of the solutions generated for the high variance instance. In this case,
the maximum cost of a feasible solution generated using any combination of α > 0 and N was less than
the minimum cost of any feasible solution generated using α = 0. The minimum cost feasible solution
generated with α = 0 was between 0.87% and 1.6% more costly than the best feasible solution generated
for the different combinations of α > 0 and N . Thus, it appears that for the high variance instance, using
α > 0 in a sample approximation is more important for generating good feasible solutions than for the low
variance instance.

Table 8 gives the lower bounds for different confidence levels and sample sizes, as well as the gaps between
these lower bounds and the best feasible solution found. In this case, solving 10 instances with sample size
N = 1000 yields a lower bound that is not very tight, 5.11% from the best solution cost at confidence level
0.999. Increasing the sample size improves the lower bound, but even with N = 10000, the gap between the
lower bound at confidence 0.999 and the best solution found is 1.83%. Thus, it appears that for the high
variance instance, the sample approximation scheme exhibits considerably slower convergence, in terms of
the lower bounds, the feasible solutions generated, or both.

4 Concluding Remarks

We have studied a sample approximation scheme for probabilistically constrained optimization problems
and demonstrated how this scheme can be used to generate optimality bounds and feasible solutions for
very general optimization problems with probabilistic constraints. We have also conducted a preliminary
computational study of this approach. This study demonstrates that using sample approximation problems
that allow a choice of which sampled constraints to satisfy can yield good quality feasible solutions. In
addition, the sample approximation scheme can be used to obtain lower bounds which are valid with high
confidence. We found that good lower bounds could be found in the case of finite (but possibly exponential)
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Table 8: Lower bounds for high variance PTP sample problems with α = ε = 0.05.

LB with confidence at least: Gap with confidence at least:
N 0.999 0.989 0.945 0.828 0.999 0.989 0.945 0.828

1000 3.2089 3.2158 3.2178 3.2264 5.11% 4.91% 4.85% 4.59%
3000 3.2761 3.2775 3.2909 3.2912 3.12% 3.08% 2.69% 2.68%
5000 3.3060 3.3075 3.3077 3.3094 2.24% 2.19% 2.19% 2.14%
7500 3.3083 3.3159 3.3165 3.3169 2.17% 1.95% 1.93% 1.92%

10000 3.3200 3.3242 3.3284 3.3299 1.83% 1.70% 1.58% 1.53%

feasible region and distribution, and also in the case of continuous feasible region and distribution, provided
the distribution has reasonably low variance. With continuous feasible region and distribution, if the dis-
tribution has high variance the lower bounds were relatively weak. Future work in this area will include
conducting more extensive computational tests, and also extending the theory to allow generation of samples
which are not necessarily independent and identically distributed. For example, the use of variance reduction
techniques such as Latin hypercube sampling or Quasi-Monte Carlo sampling may yield significantly faster
convergence.
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[12] R. Henrion, P. Li, A. Möller, M. C. Steinbach, M. Wendt, and G. Wozny. Stochastic optimization for
operating chemical processes under uncertainty. In M. Grötschel, S. Krunke, and J. Rambau, editors,
Online Optimization of Large Scale Systems, pages 457–478. Springer, 2001.

21
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