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Abstract

The transportation paradox is related to the classical transportation

problem. For certain instances of this problem an increase in the amount

of goods to be transported may lead to a decrease in the optimal to-

tal transportation cost. Thus this phenomenon has also been named the

more-for-less-paradox. Even though the paradox has been known since

the early days of linear programming, it has got very little attention in

the literature and in teaching, and it seems to be almost unknown to

the majority of the LP-practitioners. We consider the result of a recent

paper which presents necessary and sufficient conditions for a transporta-

tion cost matrix to be immune against the paradox. These conditions are

rather restrictive, supporting the results reported from simulations that

the paradox may occur quite frequently. We also consider some postopti-

mal conditions for when the paradox may occur. A simple procedure for

modifying an existing model to exploit the paradox is given and illustrated

by examples. Finally two transportation examples from two selected text-

books are presented illustrating the appearance of the paradox.

Keywords: transportation problem; transportation paradox; linear pro-

gramming; duality

1 Introduction

The classical transportation problem is the name of a mathematical model which
has a special mathematical structure. The mathematical formulation of a large
number of problems conforms (or can be made to conform) to this special struc-
ture. So the name is frequently used to refer to a particular form of mathemati-
cal model rather than the physical situation in which the problem most natural
originates.

The standard problem description is as follows: A commodity is to be trans-
ported from each of m sources to each of n destinations. The amounts available
at each of the sources are ai, i = 1, . . . , m, and the demands at the destinations
are bj , j = 1, . . . , n respectively. The total sum of the available amounts at
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the sources is equal to the sum of the demands at the destinations. The cost
of transporting one unit of the commodity from source i to destination j is ci,j .
The goal is to determine the amounts xi,j to be transported over all routes (i, j)
such that the total transportation cost is minimized.

The mathematical formulation of this standard version of the transportation
problem is the following linear program, TP:

minimize

m
∑

i=1

n
∑

j=1

ci,jxi,j

subject to

n
∑

j=1

xi,j = ai, i = 1, . . . , m

m
∑

i=1

xi,j = bj , j = 1, . . . , n

xi,j ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

An instance of TP is specified by an m × n cost matrix C = [ci,j ], an
n-dimensional demand vector b = [bj ] and an m-dimensional supply vector
a = [ai]. All the data are assumed to be nonnegative real numbers. We will use
the notation z(C,a,b) to denote the optimal objective value of an instance of
TP specified by C,a and b.

The so-called transportation paradox is the name of the following behaviour
of the transportation problem: Certain instances have the property that it is
possible to decrease the optimal objective value by increasing the supplies and
demands. More precisely, let â and b̂ be two other supply and demand vectors,
such that â ≥ a and b̂ ≥ b. Then the paradox occurs if and only if z(C, â, b̂) <
z(C,a,b).

Example 1 (from [4]): Let

C =

[

50 300
320 60

]

,

a =
[

5 10
]

b =
[

7 8
]

.

The optimal solution is

X =

[

5 0
2 8

]

with z(C,a,b) = 1370. Now increase a1 and b2 by one unit, i.e. let

â =
[

6 10
]

and
b̂ =

[

7 9
]

.
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The optimal solution is then:

X =

[

6 0
1 9

]

with z(C, â, b̂) = 1160. So one more unit transported will reduce the optimal
cost by 210. �

In the following sections we will first look at some historical facts about the
discovery and treatment of the transportation paradox. Then in section 3 we
consider necessary and sufficient conditions for when the paradox can not occur.
In section 4 we study some postoptimal (dual) conditions for when the paradox
may occur. In section 5 we consider the paradoxical properties of two numerical
TP-examples found in modern textbooks ([2] and [15]). Finally in section 6 we
discuss some variants of the TP formulation.

We will assume throughout that the reader is familiar with some basic LP-
theory and network flow algorithms (see f.ex. [1] and/or [12]).

2 Some historical facts

It is not quite clear when and by whom this paradox was first discovered. The
transportation problem itself was first formulated by Hitchcock ([11]) in 1941,
and was independently treated by Koopmans and Kantorovich (in fact Monge
formulated it in 1781 and solved it by geometrical means, see Appendix II in
[5] for a description of Monges work). In 1951 Dantzig gave the standard LP-
formulation TP in [7] and applied the simplex method to solve it. Since then
the transportation problem has become the classical common subject in almost
every textbook on operations research and mathematical programming. Very
efficient algorithms and corresponding software have been developed for solving
it.

The transportation paradox is, however, hardly mentioned at all in any of
the great number of textbooks and teaching materials where the transportation
problem is treated.

Apparently, several researchers have discovered the paradox independently
from each other. But most papers on the subject refer to the papers by Charnes
and Klingman [6] and Szwarc [14] as the initial papers. In [6] Charnes and
Klingman name it the more-for-less paradox, and they write: The paradox
was first observed in the early days of linear programming history (by whom no
one knows) and has been a part of the folklore known to some (e.g. A.Charnes
and W.W.Cooper), but unknown to the great majority of workers in the field
of linear programming.

According to [4], the transportation paradox is known as Doigs paradox at
the London School of Economics, named after Alison Doig who used it in exams
etc. around 1959 (Doig did not publish any paper on it).

Since the transportation paradox seems not to be known to the majority of
those who are working with (or teaching) the transportation problem, one may
be tempted to believe that this phenomenon is only an academic curiosity which
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will most probably not occur in any practical situation. But that seems not to
be true. Experiments done by Finke [9], with randomly generated instances of
the transportation problem of size 100× 100 and allowing additional shipments
(postoptimal), show that the transportation costs can be reduced considerably
by exploiting the paradoxical properties. More precisely, the average cost re-
ductions achieved are reported to be 18.6% with total additional shipments of
20.5%.

In a recent paper [8], Deineko & al. develop necessary and sufficient condi-
tions for a cost matrix C to be immune against the transportation paradox. As
we shall see in the next section, these conditions are rather restrictive, support-
ing the observations by Finke.

3 When will the paradox not occur?

In [8] Deineko & al. give an exact characterization of all cost matrices C that are
immune against the transportation paradox. An immune cost matrix satisfies

z(C,a,b) ≤ z(C, â, b̂)

for all supply vectors a and â with a ≤ â and for all corresponding demand
vectors b and b̂ with b ≤ b̂. So regardless of the choice of the supply and
demand vectors, the transportation paradox does not arise when the cost matrix
C is immune.

The main result in [8] is as follows:

Theorem 1 A m×n cost matrix C = [cij ] is immune against the transportation

paradox if and only if, for all integers q, r, s, t with 1 ≤ q, s ≤ m, 1 ≤ r, t ≤
n, q 6= s, r 6= t, the inequality

cqr ≤ cqt + csr (1)

is satisfied.

Proof : To prove the only if- part, suppose (1) is not true, i.e. assume cqr >
cqt + csr for some q, r, s, t. Then consider an instance where component q of
the supply vector, aq = 1, and where all the other components are zero, i.e.
ai = 0, i = 1, . . . , m, i 6= q. Similarly, let component r of the demand vector,
br = 1, and let all the other components be zero, i.e. bj = 0, j = 1, . . . , n, j 6= r.
Then clearly z(C,a,b) = cqr . Now let â be a new supply vector which is

different from a only in component s such that âs = 1, and similarly let b̂ be
different from b only in component t such that b̂t = 1. Then a ≤ â and b ≤ b̂.
In this new instance one unit may be sent directly from source q to destination
t, and another unit may be sent from source s to destination r. The total cost
of this is cqt + csr. Our assumption then leads to z(C,a,b) > z(C, â, b̂), i.e. the
paradox has occurred.

For a proof of the if-part of the theorem, see the proof of Lemma 3 in [8]. �
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Example 2 : Consider the 4 × 5 cost matrix

C =









4 15 6 13 14
16 9 22 13 16
8 5 11 4 5
12 4 18 9 10









(2)

Here we see immediately that f.ex. c14 > c11 + c34, which means that (1) is
violated for q = 1, r = 4, s = 3, t = 1. So C is not immune against the trans-
portation paradox. �

It is rather straightforward to check whether a matrix is immune or not due
to the following:

Corollary 1 It can be checked in O(mn) time whether or not a m × n cost

matrix C is immune against the transportation paradox.

Proof: See [8]. �

4 When the paradox will occur

The dual problem corresponding to the linear program TP is the following linear
program, DP:

maximize

m
∑

i=1

uiai +

n
∑

j=1

vjbj

subject to
ui + vj ≤ cij , i = 1, . . . , m; j = 1, . . . , n. (3)

Here the dual variables ui and vj correspond to the m first and the n last
equations of TP respectively. It is well known (see f.ex. [12]) that the constraint
equations of TP are linearly dependent and that the rank of the constraint ma-
trix is m+n−1. So one equation (any) is redundant and may be omitted. Thus
any optimal solution to DP will not be unique. In the following we will assume
that the first constraint equation of TP is omitted, and that the corresponding
dual variable, u1, is set to be zero, i.e. u1 = 0 throughout.

Any basic solution of TP has m + n − 1 basic variables. Let X = [xij ] be
an optimal basic solution (also called an optimal transportation tableau) of TP
and let B be the set of index pairs (i, j) of all basic variables xij in X . Then
we know from elementary LP-theory that

ui + vj − cij = 0

for all (i, j) ∈ B, and that
xij = 0
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for all (i, j) /∈ B.
The optimal objective value may then be written as:

z(C,a,b) =

m
∑

i=1

n
∑

j=1

ci,jxi,j

=

m
∑

i=1

n
∑

j=1

(ci,j − ui − vj)xi,j +

m
∑

i=1

n
∑

j=1

(ui + vj)xi,j

=
m

∑

i=1

uiai +
n

∑

j=1

vjbj .

We will now look at some postoptimal conditions which are sufficient for the
occurrence of the paradox. We consider only the case where an instance is im-
proved by increasing a single supply ai and a single demand bj by the same
amount (all the other data are unchanged). A procedure for improving an opti-
mal transportation tableau when the conditions are satisfied will be illustrated.

We have the following result (from [14]):

Theorem 2 Assume that indexes p and q exist, 1 ≤ p ≤ m; 1 ≤ q ≤ n, such

that

up + vq < 0. (4)

Assume further that a positive number θ exists, such that when supply ap is

replaced by âp = ap + θ, and demand bq is replaced by b̂q = bq + θ, a basic

feasible solution for the new instance can be found which is optimal and has the

same set B of basic variables. Then the paradox will occur.

Proof : Since the optimal solution for the new instance has the same set B
of basic variables, the optimal dual solution is unchanged. So the new optimal
objective value is:

z(C, â, b̂) =

m
∑

i=1

uiai + upθ +

n
∑

j=1

vjbj + vqθ = z(C,a,b) + θ(up + vq).

From the assumptions we then have that z(C, â, b̂) < z(C,a,b). �

When will a positive θ exist?
We illustrate first by an example (from [14]). A 4×5 instance of TP is given by
the cost matrix (2) in Example 2 and the following supply and demand vectors:

a =
[

7 18 6 15
]

b =
[

4 11 12 8 11
]

The optimal transportation tableau for this instance is:
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v1 = 1 v2 = −6 v3 = 6 v4 = −2 v5 = 0
u1 = 0 7

u2 = 15 4 6 8
u3 = 5 5 1

u4 = 10 5 10

Here the optimal dual values are written above and on the left of the tableau.
The total optimal cost of this solution is 444.
We observe that the set of index pairs for the optimal basic variables is:

B = {(1, 3), (2, 1), (2, 2), (2, 4), (3, 3), (3, 5), (4, 2), (4, 5)}.

We also observe that
u1 + v4 = −2 < 0.

So let us see if it is possible to increase a1 = 7 and b4 = 8 by a number θ > 0
such that the present optimal basic feasible solution can be modified to become
optimal for the new instance with the same set of basic variables:

7 + θ a1 = 7 + θ
4 6 − θ 8 + θ a2 = 18

5 − θ 1 + θ a3 = 6
5 + θ 10 − θ a4 = 15

b1 = 4 b2 = 11 b3 = 12 b4 = 8 + θ b5 = 11

Here the supplies and the demands are written to the right and below the
tableau. From this tableau we observe that θ may be selected as any number

0 < θ ≤ 5.

If f.ex. θ = 4 is chosen, the new optimal transportation tableau is:

11 a1 = 11
4 2 12 a2 = 18

1 5 a3 = 6
9 6 a4 = 15

b1 = 4 b2 = 11 b3 = 12 b4 = 12 b5 = 11

The cost of this solution is 444 + 4(−2) = 436. So shipping 4 units more will
reduce the total transportation cost by 8 units.

Note that if θ = 5 is chosen (the maximum value for θ), the new optimal
transportation tableau will be degenerate (one of the basic variables becomes
zero).

We observe that in order to determine the upper bound for θ, a subset S ⊆ B
of index pairs has been selected (S = B\{(2, 1)} in our example). Now suppose
we link the elements of S to form a directed path DS:

DS = {(1, 3), (3, 3), (3, 5), (4, 5), (4, 2), (2, 2), (2, 4)}.
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This ordered set defines a directed path which starts at the basic element (1, 3)
and ends at (2, 4). It is alternating in the sense that θ is added to the tableau
elements corresponding to the odd numbered elements of DS and is subtracted
from those corresponding to the even numbered elements of DS. DS consists
of an even number of perpendicular links.

In general, if indexes p and q exist such that (4) is satisfied, we try to
determine an upper bound for θ by constructing a directed alternating path
DS, starting at a basic element (p,−) in row p of the optimal transportation
tableau and ending at a basic element (−, q) in column q (in our example p = 1
and q = 4). DS will consist of index pairs for an odd number of (perpendicular)
basic elements of the tableau.

Let DSo and DSe denote the odd and even numbered elements of DS re-
spectively, such that DS = DSo ∪ DSe. The elements of the cost matrix C
corresponding to the index pairs in DS are then related as follows:

Lemma 1

CDS =
∑

(i,j)∈DSo

cij −
∑

(i,j)∈DSe

cij = up + vq.

Proof: Since the elements of DS are (perpendicular) alternating, we have that

CDS = cpj1 − ci1j1 + ci1j2 − ci2j2 + · · · − citjt
+ citq

We know that cij = ui + vj , ∀(i, j) ∈ B. Thus, since S ⊆ B, we have:

CDS = (up + vj1) − (ui1 + vj1) + (ui1 + vj2) − · · · − (uit
+ vjt

) + (uit
+ vq)

Summing all this give:
CDS = up + vq. �

We add θ to the tableau elements corresponding to DSo and subtract θ from
the tableau elements corresponding to DSe. The upper bound for θ is limited
by the smallest basic element of the optimal transportation tableau from which
θ is subtracted. So we have the following result:

Corollary 2 A positive θ exists if and only if

xij > 0, ∀(i, j) ∈ DSe.

This corollary tells us that if the optimal solution of TP is nondegenerate, and
there are components of the optimal dual solution satisfying (4), the paradox
will occur. In case of degeneracy the paradox will still occur if the index pairs
of DSe do not include any degenerate elements of the optimal tableau (see
Example 5 in section 6).

Repeated use of the process is of course possible if more than one pair of
optimal dual values satisfy (4) (the dual solution is unchanged). However, if the
maximal value of θ is selected, the new optimal tableau will be degenerate, and
this may reduce the possibility of repeated success (as Example 5 also shows).
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5 Two textbook examples

Example 3: The following TP instance is the introductory example for the
study of the transportation problem in the textbook [2] by Anderson & al. In
the example there are three origins (plants) and four destinations (distribution
centers). The amounts (number of units of the product) available at each of
the origins, the demands at each of the destinations and the transportation cost
from each origin i to each destination j are given respectively by:

a =
[

5000 6000 2500
]

,

b =
[

6000 4000 2000 1500
]

and

C =





3 2 7 6
7 5 2 3
2 5 4 5



 .

It is easy to verify that this cost matrix is not immune against the transportation
paradox.

The optimal transportation tableau for this instance is:

v1 = 3 v2 = 2 v3 = −1 v4 = 0
u1 = 0 3500 1500
u2 = 3 2500 2000 1500

u3 = −1 2500

The optimal total cost is 39500.
The assumption (4) is satisfied by f.ex. p = 3 and q = 3 since u3 + v3 = −2.

A directed path DS starting in (3, 1) and ending in (2, 3) can be constructed.
Since the optimal solution is non-degenerate, we know from Corollary 2 that a
positive number θ can be found, which when added to a3 and b3 will give a new
optimal tableau with a lower cost.

To determine an upper bound for θ, we consider the following transportation
tableau:

3500 − θ 1500 + θ a1 = 5000
2500 − θ 2000 + θ 1500 a2 = 6000

2500 + θ a3 = 2500 + θ

b1 = 6000 b2 = 4000 b3 = 2000 + θ b4 = 1500

We see that any value of θ such that

0 < θ ≤ 2500

will give a new optimal solution with a lower cost. If θ = 2500 is selected, the
total cost is reduced by 5000 (to 34500). Repeated use of the process is then
not possible (due to degeneracy, no positive θ can be found for the other dual
combinations satisfying (4)).
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The example is thoroughly explained and solved (also by the transportation
simplex method) in [2]. The paradoxical properties of this instance are, how-
ever, not mentioned.

Example 4: The main example in Chapter 7 of [15] is the following TP
problem: Three power plants supply the needs for electricity of four cities. The
number of kilowatt-hours (in millions) each power plant can supply, and the
(peak) power demands at the four cities are respectively:

a =
[

35 50 40
]

,

b =
[

45 20 30 30
]

.

The cost of sending one million kwh from plant i to city j is given by the
following matrix:

C =





8 6 10 9
9 12 13 7
14 9 16 5



 .

This matrix is not immune against the transportation paradox. But the optimal
solution of this instance is:

v1 = 6 v2 = 6 v3 = 10 v4 = 2
u1 = 0 10 25
u2 = 3 45 5
u3 = 3 10 30

Here there are not any indexes p and q such that (4) is satisfied. So the paradox
do not occur.
However, from Theorem 1 and Lemma 1 we see that if the supplies and demands
were such that the optimal set B of index pairs included f.ex. the index pairs
(1,3),(3,3) and (3,4), or the index pairs (1,1),(3,1) and (3,4), the paradox may
occur. To confirm this, suppose we have another instance where the cost matrix
C is the same, but the supplies and the demands are:

a =
[

45 20 60
]

,

b =
[

35 20 40 30
]

.

An optimal transportation tableau (not unique) for this instance is:

v1 = 8 v2 = 3 v3 = 10 v4 = −1
u1 = 0 15 30
u2 = 1 20
u3 = 6 20 10 30

The total cost is 1090.
Since u1 + v4 = −1, the total cost will be reduced by θ if supply a1 and demand
b4 are both increased by θ, where 0 < θ ≤ 10.
Another optimal transportation tableau for this instance is:
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v1 = 8 v2 = 3 v3 = 10 v4 = −1
u1 = 0 5 40
u2 = 1 20
u3 = 6 10 20 30

Again we see that the total optimal cost will decrease if we increase the same
supply and demand as we did in the previous tableau.

6 Variants of the transportation problem

Consider the formulation which in the following will be named GTP:

minimize

m
∑

i=1

n
∑

j=1

ci,jxi,j

subject to

n
∑

j=1

xi,j ≥ ai, i = 1, . . . , m

m
∑

i=1

xi,j ≥ bj , j = 1, . . . , n

xi,j ≥ 0, i = 1, . . . , m, j = 1, . . . , n.

A number of variants of GTP, including TP, have been studied by several authors
(e.g. Appa, Charnes and Klingman, Hadley, Proll, Szhwarc). In [3] 54 different
variants are treated in detail. The main concern in [3] is to study which variants
are equivalent (have the same optimal solution) and which are not. This effort
was partly motivated by the incorrect treatment of some of these aspects in [10]
(Exercise 9-26, p.327). As pointed out by Proll in [13], the erroneous conclusion
reached by Hadley was independently also recognized and commented on by
Charnes and Klingman ([6]) and by Szwarc ([14]).

In this section we shall not consider all the possible variants of GTP. We
will only look at the relation between TP and the variant of GTP where the
assumption

∑m

i=1 ai =
∑n

j=1 bj is valid. The following important result has
been proved in [14]:

Theorem 3 If the optimal dual variables corresponding to an optimal solution

of TP satisfy ui+vj ≥ 0 for all i and j, the problems TP and GTP are equivalent.

From the examples in the foregoing sections we see immediately that TP and
GTP are not equivalent when the paradox occurs in TP:
The improvement procedure applied on the optimal TP solution, where in each
step a single ai and a single bj are increased by the same amount, lead to feasible
solutions of GTP with lower objective value than the optimal TP value.

One may ask if repeated use of the improvement procedure (until no further
improvements are possible) will always lead to an optimal solution of GTP. The
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following example shows that the answer is negative.

Example 5 :
a =

[

10 6 15 4
]

,

b =
[

5 14 10 6
]

and

C =









5 8 7 6
6 10 5 5
7 15 3 16
15 21 8 18









.

The optimal TP-tableau for this instance is:

v1 = 5 v2 = 8 v3 = −4 v4 = 3
u1 = 0 10
u2 = 2 0 6
u3 = 7 5 4 6
u4 = 9 4

The total cost of this solution is 255.
Since u1 + v3 = −4 and u2 + v3 = −2, we have two possible starting points for
improvements. If we start with the first alternative, we increase a1 and b3 by
θ = 4 and get the following tableau:

14
0 6

5 0 10
4

The total cost of this solution is 255 − 4 ∗ 4 = 239. This solution can not be
further improved (trying to increase a2 and b3 yields θ = 0). The solution is in
fact optimal for GTP.

But if we start to improve the optimal TP tableau by first increasing a2 and
b3 (again by θ = 4), we get the following tableau:

10
4 6

5 0 10
4

The total cost of this solution is 255 − 2 ∗ 4 = 247. This solution can not be
improved further (trying to increase a1 and b3 yields θ = 0), so we do not reach
an optimal solution of GTP from this starting point.
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7 Conclusions

We have considered the classical transportation problem and studied the oc-
currence of the so-called transportation paradox (also called the more-for-less

paradox ). Even if the first discovery of the paradox is a bit unclear, it is evident
that it has been known since the early days of LP. It has, however, got very little
attention in the literature, and it is almost completely ignored in textbooks all
over the world, both elementary and more advanced books. The main reason
for this may be that it is considered as a rather odd phenomenon which hardly
occurs in any practical situation.

The simulation research reported by Finke in [9] indicates, however, that the
paradox may occur quite frequently. The rather restrictive conditions for a cost
matrix to be immune against the paradox (see Theorem 1) point in the same
direction.

We therefore urge that the transportation paradox should be given much
more attention both in practical applications and in teaching. The paradox
should be taught as an important part of the numerical properties of this clas-
sical problem.

In addition we hope that a lot of the existing excellent software for TP will
be extended to include at least a preprocessing routine for deciding whether the
cost matrix is immune or not against the paradox. If the cost matrix is not
immune, and there are optimal dual variables satisfying (4), an option allowing
postprocessing of the optimal solution should be available. The cost of these
additional computations is modest and may provide valuable new insight in the
problem from which the data for the actual TP-instance originates.
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